Show commands:
Magma
magma: G := TransitiveGroup(36, 12);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3\times A_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $36$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,33,15)(2,34,16)(3,35,13)(4,36,14)(5,28,19)(6,27,20)(7,26,18)(8,25,17)(9,29,21)(10,30,22)(11,32,23)(12,31,24), (1,28,23)(2,27,24)(3,26,21)(4,25,22)(5,29,14)(6,30,13)(7,32,16)(8,31,15)(9,34,17)(10,33,18)(11,36,20)(12,35,19) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 4 $9$: $C_3^2$ $12$: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$ x 4
Degree 4: $A_4$
Degree 6: $A_4$
Degree 9: $C_3^2$
Degree 12: $A_4$, $C_3\times A_4$ x 3
Degree 18: $A_4 \times C_3$
Low degree siblings
12T20 x 3, 18T8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,27)(26,28)(29,32)(30,31)(33,35)(34,36)$ |
3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 6, 9)( 2, 5,10)( 3, 8,11)( 4, 7,12)(13,17,23)(14,18,24)(15,20,21)(16,19,22)(25,32,35)(26,31,36)(27,29,33)(28,30,34)$ |
3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 9, 6)( 2,10, 5)( 3,11, 8)( 4,12, 7)(13,23,17)(14,24,18)(15,21,20)(16,22,19)(25,35,32)(26,36,31)(27,33,29)(28,34,30)$ |
3B1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,27,21)( 2,28,22)( 3,25,23)( 4,26,24)( 5,30,16)( 6,29,15)( 7,31,14)( 8,32,13)( 9,33,20)(10,34,19)(11,35,17)(12,36,18)$ |
3B-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,21,27)( 2,22,28)( 3,23,25)( 4,24,26)( 5,16,30)( 6,15,29)( 7,14,31)( 8,13,32)( 9,20,33)(10,19,34)(11,17,35)(12,18,36)$ |
3C1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,29,20)( 2,30,19)( 3,32,17)( 4,31,18)( 5,34,22)( 6,33,21)( 7,36,24)( 8,35,23)( 9,27,15)(10,28,16)(11,25,13)(12,26,14)$ |
3C-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,33,15)( 2,34,16)( 3,35,13)( 4,36,14)( 5,28,19)( 6,27,20)( 7,26,18)( 8,25,17)( 9,29,21)(10,30,22)(11,32,23)(12,31,24)$ |
3D1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,15,33)( 2,16,34)( 3,13,35)( 4,14,36)( 5,19,28)( 6,20,27)( 7,18,26)( 8,17,25)( 9,21,29)(10,22,30)(11,23,32)(12,24,31)$ |
3D-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,20,29)( 2,19,30)( 3,17,32)( 4,18,31)( 5,22,34)( 6,21,33)( 7,24,36)( 8,23,35)( 9,15,27)(10,16,28)(11,13,25)(12,14,26)$ |
6A1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1,12, 6, 4, 9, 7)( 2,11, 5, 3,10, 8)(13,24,17,14,23,18)(15,22,20,16,21,19)(25,33,32,27,35,29)(26,34,31,28,36,30)$ |
6A-1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1, 7, 9, 4, 6,12)( 2, 8,10, 3, 5,11)(13,18,23,14,17,24)(15,19,21,16,20,22)(25,29,35,27,32,33)(26,30,36,28,31,34)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Group invariants
Order: | $36=2^{2} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 36.11 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C1 | 3C-1 | 3D1 | 3D-1 | 6A1 | 6A-1 | ||
Size | 1 | 3 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3C-1 | 3D-1 | 3D1 | 3C1 | 3A1 | 3A-1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | |
Type | |||||||||||||
36.11.1a | R | ||||||||||||
36.11.1b1 | C | ||||||||||||
36.11.1b2 | C | ||||||||||||
36.11.1c1 | C | ||||||||||||
36.11.1c2 | C | ||||||||||||
36.11.1d1 | C | ||||||||||||
36.11.1d2 | C | ||||||||||||
36.11.1e1 | C | ||||||||||||
36.11.1e2 | C | ||||||||||||
36.11.3a | R | ||||||||||||
36.11.3b1 | C | ||||||||||||
36.11.3b2 | C |
magma: CharacterTable(G);