Show commands:
Magma
magma: G := TransitiveGroup(36, 10);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{18}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $36$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,30)(2,29)(3,31)(4,32)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18)(33,35)(34,36), (1,10)(2,9)(3,12)(4,11)(5,8)(6,7)(13,33)(14,34)(15,36)(16,35)(17,32)(18,31)(19,29)(20,30)(21,28)(22,27)(23,26)(24,25) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $18$: $D_{9}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 9: $D_{9}$
Degree 12: $D_6$
Low degree siblings
18T13 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,30)( 2,29)( 3,31)( 4,32)( 5,28)( 6,27)( 7,26)( 8,25)( 9,24)(10,23)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18)(33,35)(34,36)$ |
2C | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,35)( 2,36)( 3,34)( 4,33)( 5,31)( 6,32)( 7,29)( 8,30)( 9,27)(10,28)(11,26)(12,25)(13,23)(14,24)(15,22)(16,21)(17,19)(18,20)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,16,28)( 2,15,27)( 3,14,25)( 4,13,26)( 5,18,30)( 6,17,29)( 7,19,32)( 8,20,31)( 9,22,36)(10,21,35)(11,23,33)(12,24,34)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,27,16, 2,28,15)( 3,26,14, 4,25,13)( 5,29,18, 6,30,17)( 7,31,19, 8,32,20)( 9,35,22,10,36,21)(11,34,23,12,33,24)$ |
9A1 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,32,24,16, 7,34,28,19,12)( 2,31,23,15, 8,33,27,20,11)( 3,29,21,14, 6,35,25,17,10)( 4,30,22,13, 5,36,26,18, 9)$ |
9A2 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,19,34,16,32,12,28, 7,24)( 2,20,33,15,31,11,27, 8,23)( 3,17,35,14,29,10,25, 6,21)( 4,18,36,13,30, 9,26, 5,22)$ |
9A4 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1, 7,12,16,19,24,28,32,34)( 2, 8,11,15,20,23,27,31,33)( 3, 6,10,14,17,21,25,29,35)( 4, 5, 9,13,18,22,26,30,36)$ |
18A1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,33,32,27,24,20,16,11, 7, 2,34,31,28,23,19,15,12, 8)( 3,36,29,26,21,18,14, 9, 6, 4,35,30,25,22,17,13,10, 5)$ |
18A5 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,23, 7,27,12,31,16,33,19, 2,24, 8,28,11,32,15,34,20)( 3,22, 6,26,10,30,14,36,17, 4,21, 5,25, 9,29,13,35,18)$ |
18A7 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,11,19,27,34, 8,16,23,32, 2,12,20,28,33, 7,15,24,31)( 3, 9,17,26,35, 5,14,22,29, 4,10,18,25,36, 6,13,21,30)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Group invariants
Order: | $36=2^{2} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 36.4 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 6A | 9A1 | 9A2 | 9A4 | 18A1 | 18A5 | 18A7 | ||
Size | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3A | 9A2 | 9A4 | 9A1 | 9A1 | 9A4 | 9A2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 2A | 3A | 3A | 3A | 6A | 6A | 6A | |
Type | |||||||||||||
36.4.1a | R | ||||||||||||
36.4.1b | R | ||||||||||||
36.4.1c | R | ||||||||||||
36.4.1d | R | ||||||||||||
36.4.2a | R | ||||||||||||
36.4.2b | R | ||||||||||||
36.4.2c1 | R | ||||||||||||
36.4.2c2 | R | ||||||||||||
36.4.2c3 | R | ||||||||||||
36.4.2d1 | R | ||||||||||||
36.4.2d2 | R | ||||||||||||
36.4.2d3 | R |
magma: CharacterTable(G);