Group action invariants
| Degree $n$ : | $34$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $C_{17}:C_8$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,28,24,21,4,12,15,17)(2,27,23,22,3,11,16,18)(5,30,7,14,34,9,31,25)(6,29,8,13,33,10,32,26)(19,20), (1,20)(2,19)(3,17)(4,18)(5,16)(6,15)(7,13)(8,14)(9,11)(10,12)(21,34)(22,33)(23,31)(24,32)(25,30)(26,29) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 8: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 17: $C_{17}:C_{8}$
Low degree siblings
17T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 1, 1 $ | $17$ | $4$ | $( 3,10,34,28)( 4, 9,33,27)( 5,17,31,19)( 6,18,32,20)( 7,26,29,12)( 8,25,30,11) (13,16,23,21)(14,15,24,22)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 1, 1 $ | $17$ | $4$ | $( 3,28,34,10)( 4,27,33, 9)( 5,19,31,17)( 6,20,32,18)( 7,12,29,26)( 8,11,30,25) (13,21,23,16)(14,22,24,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $17$ | $2$ | $( 3,34)( 4,33)( 5,31)( 6,32)( 7,29)( 8,30)( 9,27)(10,28)(11,25)(12,26)(13,23) (14,24)(15,22)(16,21)(17,19)(18,20)$ |
| $ 8, 8, 8, 8, 2 $ | $17$ | $8$ | $( 1, 2)( 3, 6,10,18,34,32,28,20)( 4, 5, 9,17,33,31,27,19)( 7,14,26,15,29,24, 12,22)( 8,13,25,16,30,23,11,21)$ |
| $ 8, 8, 8, 8, 2 $ | $17$ | $8$ | $( 1, 2)( 3,18,28, 6,34,20,10,32)( 4,17,27, 5,33,19, 9,31)( 7,15,12,14,29,22, 26,24)( 8,16,11,13,30,21,25,23)$ |
| $ 8, 8, 8, 8, 2 $ | $17$ | $8$ | $( 1, 2)( 3,20,28,32,34,18,10, 6)( 4,19,27,31,33,17, 9, 5)( 7,22,12,24,29,15, 26,14)( 8,21,11,23,30,16,25,13)$ |
| $ 8, 8, 8, 8, 2 $ | $17$ | $8$ | $( 1, 2)( 3,32,10,20,34, 6,28,18)( 4,31, 9,19,33, 5,27,17)( 7,24,26,22,29,14, 12,15)( 8,23,25,21,30,13,11,16)$ |
| $ 17, 17 $ | $8$ | $17$ | $( 1, 4, 6, 8, 9,11,14,15,18,20,22,24,25,27,30,32,33)( 2, 3, 5, 7,10,12,13,16, 17,19,21,23,26,28,29,31,34)$ |
| $ 17, 17 $ | $8$ | $17$ | $( 1, 8,14,20,25,32, 4, 9,15,22,27,33, 6,11,18,24,30)( 2, 7,13,19,26,31, 3,10, 16,21,28,34, 5,12,17,23,29)$ |
Group invariants
| Order: | $136=2^{3} \cdot 17$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [136, 12] |
| Character table: |
2 3 3 3 3 3 3 3 3 . .
17 1 . . . . . . . 1 1
1a 4a 4b 2a 8a 8b 8c 8d 17a 17b
2P 1a 2a 2a 1a 4a 4b 4b 4a 17a 17b
3P 1a 4b 4a 2a 8b 8a 8d 8c 17b 17a
5P 1a 4a 4b 2a 8d 8c 8b 8a 17b 17a
7P 1a 4b 4a 2a 8c 8d 8a 8b 17b 17a
11P 1a 4b 4a 2a 8b 8a 8d 8c 17b 17a
13P 1a 4a 4b 2a 8d 8c 8b 8a 17a 17b
17P 1a 4a 4b 2a 8a 8b 8c 8d 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 -1 1 1
X.3 1 -1 -1 1 A -A -A A 1 1
X.4 1 -1 -1 1 -A A A -A 1 1
X.5 1 A -A -1 B -/B /B -B 1 1
X.6 1 A -A -1 -B /B -/B B 1 1
X.7 1 -A A -1 -/B B -B /B 1 1
X.8 1 -A A -1 /B -B B -/B 1 1
X.9 8 . . . . . . . C *C
X.10 8 . . . . . . . *C C
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)^3
C = E(17)^3+E(17)^5+E(17)^6+E(17)^7+E(17)^10+E(17)^11+E(17)^12+E(17)^14
= (-1-Sqrt(17))/2 = -1-b17
|