Group action invariants
| Degree $n$ : | $34$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $C_2\times D_{17}.C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,8,33)(2,10,7,34)(3,17,6,26)(4,18,5,25)(11,16,31,27)(12,15,32,28)(13,23,29,19)(14,24,30,20), (1,26,20,29)(2,25,19,30)(3,33,17,21)(4,34,18,22)(5,7,16,13)(6,8,15,14)(9,23,11,32)(10,24,12,31)(27,28) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 68: $C_{17}:C_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 17: $C_{17}:C_{4}$
Low degree siblings
34T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 1, 1 $ | $17$ | $4$ | $( 3,10,34,28)( 4, 9,33,27)( 5,18,31,20)( 6,17,32,19)( 7,26,29,12)( 8,25,30,11) (13,15,23,22)(14,16,24,21)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 1, 1 $ | $17$ | $4$ | $( 3,28,34,10)( 4,27,33, 9)( 5,20,31,18)( 6,19,32,17)( 7,12,29,26)( 8,11,30,25) (13,22,23,15)(14,21,24,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $17$ | $2$ | $( 3,34)( 4,33)( 5,31)( 6,32)( 7,29)( 8,30)( 9,27)(10,28)(11,25)(12,26)(13,23) (14,24)(15,22)(16,21)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2 $ | $17$ | $4$ | $( 1, 2)( 3, 9,34,27)( 4,10,33,28)( 5,17,31,19)( 6,18,32,20)( 7,25,29,11) ( 8,26,30,12)(13,16,23,21)(14,15,24,22)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2 $ | $17$ | $4$ | $( 1, 2)( 3,27,34, 9)( 4,28,33,10)( 5,19,31,17)( 6,20,32,18)( 7,11,29,25) ( 8,12,30,26)(13,21,23,16)(14,22,24,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $17$ | $2$ | $( 1, 2)( 3,33)( 4,34)( 5,32)( 6,31)( 7,30)( 8,29)( 9,28)(10,27)(11,26)(12,25) (13,24)(14,23)(15,21)(16,22)(17,20)(18,19)$ |
| $ 34 $ | $4$ | $34$ | $( 1, 3, 5, 7, 9,12,14,15,18,19,21,23,25,28,30,32,33, 2, 4, 6, 8,10,11,13,16, 17,20,22,24,26,27,29,31,34)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1, 4, 5, 8, 9,11,14,16,18,20,21,24,25,27,30,31,33)( 2, 3, 6, 7,10,12,13,15, 17,19,22,23,26,28,29,32,34)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1, 5, 9,14,18,21,25,30,33, 4, 8,11,16,20,24,27,31)( 2, 6,10,13,17,22,26,29, 34, 3, 7,12,15,19,23,28,32)$ |
| $ 34 $ | $4$ | $34$ | $( 1, 6, 9,13,18,22,25,29,33, 3, 8,12,16,19,24,28,31, 2, 5,10,14,17,21,26,30, 34, 4, 7,11,15,20,23,27,32)$ |
| $ 34 $ | $4$ | $34$ | $( 1, 7,14,19,25,32, 4,10,16,22,27,34, 5,12,18,23,30, 2, 8,13,20,26,31, 3, 9, 15,21,28,33, 6,11,17,24,29)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1, 8,14,20,25,31, 4, 9,16,21,27,33, 5,11,18,24,30)( 2, 7,13,19,26,32, 3,10, 15,22,28,34, 6,12,17,23,29)$ |
| $ 34 $ | $4$ | $34$ | $( 1,13,25, 3,16,28, 5,17,30, 7,20,32, 9,22,33,12,24, 2,14,26, 4,15,27, 6,18, 29, 8,19,31,10,21,34,11,23)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1,14,25, 4,16,27, 5,18,30, 8,20,31, 9,21,33,11,24)( 2,13,26, 3,15,28, 6,17, 29, 7,19,32,10,22,34,12,23)$ |
Group invariants
| Order: | $136=2^{3} \cdot 17$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [136, 13] |
| Character table: |
2 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1
17 1 . . . 1 . . . 1 1 1 1 1 1 1 1
1a 4a 4b 2a 2b 4c 4d 2c 34a 17a 17b 34b 34c 17c 34d 17d
2P 1a 2a 2a 1a 1a 2a 2a 1a 17b 17b 17a 17a 17d 17d 17c 17c
3P 1a 4b 4a 2a 2b 4d 4c 2c 34c 17c 17d 34d 34b 17b 34a 17a
5P 1a 4a 4b 2a 2b 4c 4d 2c 34c 17c 17d 34d 34b 17b 34a 17a
7P 1a 4b 4a 2a 2b 4d 4c 2c 34d 17d 17c 34c 34a 17a 34b 17b
11P 1a 4b 4a 2a 2b 4d 4c 2c 34d 17d 17c 34c 34a 17a 34b 17b
13P 1a 4a 4b 2a 2b 4c 4d 2c 34a 17a 17b 34b 34c 17c 34d 17d
17P 1a 4a 4b 2a 2b 4c 4d 2c 2b 1a 1a 2b 2b 1a 2b 1a
19P 1a 4b 4a 2a 2b 4d 4c 2c 34b 17b 17a 34a 34d 17d 34c 17c
23P 1a 4b 4a 2a 2b 4d 4c 2c 34d 17d 17c 34c 34a 17a 34b 17b
29P 1a 4a 4b 2a 2b 4c 4d 2c 34c 17c 17d 34d 34b 17b 34a 17a
31P 1a 4b 4a 2a 2b 4d 4c 2c 34c 17c 17d 34d 34b 17b 34a 17a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1
X.3 1 -1 -1 1 1 -1 -1 1 1 1 1 1 1 1 1 1
X.4 1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1
X.5 1 A -A -1 -1 -A A 1 -1 1 1 -1 -1 1 -1 1
X.6 1 -A A -1 -1 A -A 1 -1 1 1 -1 -1 1 -1 1
X.7 1 A -A -1 1 A -A -1 1 1 1 1 1 1 1 1
X.8 1 -A A -1 1 -A A -1 1 1 1 1 1 1 1 1
X.9 4 . . . 4 . . . B B E E C C D D
X.10 4 . . . 4 . . . C C D D E E B B
X.11 4 . . . 4 . . . D D C C B B E E
X.12 4 . . . 4 . . . E E B B D D C C
X.13 4 . . . -4 . . . -B B E -E -C C -D D
X.14 4 . . . -4 . . . -C C D -D -E E -B B
X.15 4 . . . -4 . . . -D D C -C -B B -E E
X.16 4 . . . -4 . . . -E E B -B -D D -C C
A = -E(4)
= -Sqrt(-1) = -i
B = E(17)^3+E(17)^5+E(17)^12+E(17)^14
C = E(17)^2+E(17)^8+E(17)^9+E(17)^15
D = E(17)+E(17)^4+E(17)^13+E(17)^16
E = E(17)^6+E(17)^7+E(17)^10+E(17)^11
|