Group action invariants
| Degree $n$ : | $34$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $D_{17}.C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,4,23)(2,16,3,24)(5,31,34,8)(6,32,33,7)(9,14,29,25)(10,13,30,26)(11,21,28,18)(12,22,27,17)(19,20), (1,14,25,4,16,27,5,18,30,7,19,32,10,21,34,12,24)(2,13,26,3,15,28,6,17,29,8,20,31,9,22,33,11,23) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 17: $C_{17}:C_{4}$
Low degree siblings
17T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $17$ | $2$ | $( 3,33)( 4,34)( 5,32)( 6,31)( 7,30)( 8,29)( 9,28)(10,27)(11,26)(12,25)(13,23) (14,24)(15,22)(16,21)(17,20)(18,19)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2 $ | $17$ | $4$ | $( 1, 2)( 3,10,33,27)( 4, 9,34,28)( 5,17,32,20)( 6,18,31,19)( 7,26,30,11) ( 8,25,29,12)(13,16,23,21)(14,15,24,22)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2 $ | $17$ | $4$ | $( 1, 2)( 3,27,33,10)( 4,28,34, 9)( 5,20,32,17)( 6,19,31,18)( 7,11,30,26) ( 8,12,29,25)(13,21,23,16)(14,22,24,15)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1, 4, 5, 7,10,12,14,16,18,19,21,24,25,27,30,32,34)( 2, 3, 6, 8, 9,11,13,15, 17,20,22,23,26,28,29,31,33)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1, 5,10,14,18,21,25,30,34, 4, 7,12,16,19,24,27,32)( 2, 6, 9,13,17,22,26,29, 33, 3, 8,11,15,20,23,28,31)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1, 7,14,19,25,32, 4,10,16,21,27,34, 5,12,18,24,30)( 2, 8,13,20,26,31, 3, 9, 15,22,28,33, 6,11,17,23,29)$ |
| $ 17, 17 $ | $4$ | $17$ | $( 1,14,25, 4,16,27, 5,18,30, 7,19,32,10,21,34,12,24)( 2,13,26, 3,15,28, 6,17, 29, 8,20,31, 9,22,33,11,23)$ |
Group invariants
| Order: | $68=2^{2} \cdot 17$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [68, 3] |
| Character table: |
2 2 2 2 2 . . . .
17 1 . . . 1 1 1 1
1a 2a 4a 4b 17a 17b 17c 17d
2P 1a 1a 2a 2a 17b 17a 17d 17c
3P 1a 2a 4b 4a 17c 17d 17b 17a
5P 1a 2a 4a 4b 17c 17d 17b 17a
7P 1a 2a 4b 4a 17d 17c 17a 17b
11P 1a 2a 4b 4a 17d 17c 17a 17b
13P 1a 2a 4a 4b 17a 17b 17c 17d
17P 1a 2a 4a 4b 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1
X.3 1 -1 A -A 1 1 1 1
X.4 1 -1 -A A 1 1 1 1
X.5 4 . . . B E C D
X.6 4 . . . C D E B
X.7 4 . . . D C B E
X.8 4 . . . E B D C
A = -E(4)
= -Sqrt(-1) = -i
B = E(17)^3+E(17)^5+E(17)^12+E(17)^14
C = E(17)^2+E(17)^8+E(17)^9+E(17)^15
D = E(17)+E(17)^4+E(17)^13+E(17)^16
E = E(17)^6+E(17)^7+E(17)^10+E(17)^11
|