Properties

Label 34T39
34T39 1 25 1->25 33 1->33 2 18 2->18 28 2->28 3 23 3->23 3->28 4 4->18 21 4->21 5 30 5->30 31 5->31 6 24 6->24 6->25 7 20 7->20 34 7->34 8 27 8->27 32 8->32 9 9->20 9->27 10 22 10->22 10->30 11 11->23 11->34 12 29 12->29 12->33 13 13->24 26 13->26 14 19 14->19 14->19 15 15->29 15->31 16 16->22 16->26 17 17->21 17->32 18->5 18->16 19->2 19->11 20->5 20->17 21->6 21->8 22->11 22->12 23->1 23->14 24->7 24->17 25->3 25->13 26->2 26->6 27->8 27->9 28->12 28->14 29->3 30->1 30->9 31->4 32->4 32->7 33->10 33->10 34->13 34->16
Degree $34$
Order $9248$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{17}^2.Q_8$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(34, 39);
 

Group invariants

Abstract group:  $D_{17}^2.Q_8$
magma: IdentifyGroup(G);
 
Order:  $9248=2^{5} \cdot 17^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $34$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $39$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,25,3,28,12,33,10,30)(2,18,16,22,11,23,14,19)(4,21,8,27,9,20,5,31)(6,24,17,32,7,34,13,26)(15,29)$, $(1,33,10,22,12,29,3,23)(2,28,14,19,11,34,16,26)(4,18,5,30,9,27,8,32)(6,25,13,24,7,20,17,21)(15,31)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $D_{4}$, $C_4\times C_2$, $Q_8$
$16$:  $C_4:C_4$
$32$:  16T49

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 17: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{34}$ $1$ $1$ $0$ $()$
2A $2^{8},1^{18}$ $34$ $2$ $8$ $( 1, 4)( 2, 3)( 5,17)( 6,16)( 7,15)( 8,14)( 9,13)(10,12)$
2B $2^{16},1^{2}$ $289$ $2$ $16$ $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)(11,17)(12,16)(13,15)(18,20)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)$
4A1 $4^{8},1^{2}$ $289$ $4$ $24$ $( 1,13,10,15)( 2,17, 9,11)( 3, 4, 8, 7)( 5,12, 6,16)(18,32,20,23)(21,27,34,28)(22,31,33,24)(25,26,30,29)$
4A-1 $4^{8},1^{2}$ $289$ $4$ $24$ $( 1,15,10,13)( 2,11, 9,17)( 3, 7, 8, 4)( 5,16, 6,12)(18,23,20,32)(21,28,34,27)(22,24,33,31)(25,29,30,26)$
4B $4^{8},1^{2}$ $578$ $4$ $24$ $( 1, 6, 9, 4)( 2,10, 8,17)( 3,14, 7,13)(11,12,16,15)(18,32,27,30)(19,28,26,34)(20,24,25,21)(22,33,23,29)$
8A1 $8^{4},1^{2}$ $578$ $8$ $28$ $( 1,14, 6, 7, 9,13, 4, 3)( 2,16,10,15, 8,11,17,12)(18,29,32,22,27,33,30,23)(19,20,28,24,26,25,34,21)$
8A-1 $8^{4},1^{2}$ $578$ $8$ $28$ $( 1, 3, 4,13, 9, 7, 6,14)( 2,12,17,11, 8,15,10,16)(18,23,30,33,27,22,32,29)(19,21,34,25,26,24,28,20)$
8B1 $8^{4},1^{2}$ $578$ $8$ $28$ $( 1, 4,15,10, 3,17, 6,11)( 5,13,14,12,16, 8, 7, 9)(18,30,24,27,34,22,28,25)(19,21,20,29,33,31,32,23)$
8B3 $8^{4},1^{2}$ $578$ $8$ $28$ $( 1,10, 6, 4, 3,11,15,17)( 5,12, 7,13,16, 9,14, 8)(18,27,28,30,34,25,24,22)(19,29,32,21,33,23,20,31)$
8C1 $8^{4},2$ $1156$ $8$ $29$ $( 1,25,13,26,10,30,15,29)( 2,18,17,32, 9,20,11,23)( 3,28, 4,21, 8,27, 7,34)( 5,31,12,33, 6,24,16,22)(14,19)$
8C-1 $8^{4},2$ $1156$ $8$ $29$ $( 1,29,15,30,10,26,13,25)( 2,23,11,20, 9,32,17,18)( 3,34, 7,27, 8,21, 4,28)( 5,22,16,24, 6,33,12,31)(14,19)$
8D1 $8^{4},2$ $1156$ $8$ $29$ $( 1,31, 3,21,11,32, 9,25)( 2,26, 7,18,10,20, 5,28)( 4,33,15,29, 8,30,14,34)( 6,23)(12,27,13,22,17,19,16,24)$
8D-1 $8^{4},2$ $1156$ $8$ $29$ $( 1,25, 9,32,11,21, 3,31)( 2,28, 5,20,10,18, 7,26)( 4,34,14,30, 8,29,15,33)( 6,23)(12,24,16,19,17,22,13,27)$
17A1 $17,1^{17}$ $16$ $17$ $16$ $(18,31,27,23,19,32,28,24,20,33,29,25,21,34,30,26,22)$
17A3 $17,1^{17}$ $16$ $17$ $16$ $(18,23,28,33,21,26,31,19,24,29,34,22,27,32,20,25,30)$
17B1 $17^{2}$ $32$ $17$ $32$ $( 1,11, 4,14, 7,17,10, 3,13, 6,16, 9, 2,12, 5,15, 8)(18,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19)$
17B3 $17^{2}$ $32$ $17$ $32$ $( 1,14,10, 6, 2,15,11, 7, 3,16,12, 8, 4,17,13, 9, 5)(18,32,29,26,23,20,34,31,28,25,22,19,33,30,27,24,21)$
17C1 $17^{2}$ $32$ $17$ $32$ $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)(18,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19)$
17C3 $17^{2}$ $32$ $17$ $32$ $( 1,10, 2,11, 3,12, 4,13, 5,14, 6,15, 7,16, 8,17, 9)(18,32,29,26,23,20,34,31,28,25,22,19,33,30,27,24,21)$
17D1 $17^{2}$ $32$ $17$ $32$ $( 1, 9,17, 8,16, 7,15, 6,14, 5,13, 4,12, 3,11, 2,10)(18,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19)$
17D2 $17^{2}$ $32$ $17$ $32$ $( 1,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(18,33,31,29,27,25,23,21,19,34,32,30,28,26,24,22,20)$
17D3 $17^{2}$ $32$ $17$ $32$ $( 1, 8,15, 5,12, 2, 9,16, 6,13, 3,10,17, 7,14, 4,11)(18,32,29,26,23,20,34,31,28,25,22,19,33,30,27,24,21)$
17D6 $17^{2}$ $32$ $17$ $32$ $( 1,15,12, 9, 6, 3,17,14,11, 8, 5, 2,16,13,10, 7, 4)(18,29,23,34,28,22,33,27,21,32,26,20,31,25,19,30,24)$
34A1 $17,2^{8},1$ $272$ $34$ $24$ $( 1, 4)( 2, 3)( 5,17)( 6,16)( 7,15)( 8,14)( 9,13)(10,12)(18,33,31,29,27,25,23,21,19,34,32,30,28,26,24,22,20)$
34A3 $17,2^{8},1$ $272$ $34$ $24$ $( 1, 4)( 2, 3)( 5,17)( 6,16)( 7,15)( 8,14)( 9,13)(10,12)(18,29,23,34,28,22,33,27,21,32,26,20,31,25,19,30,24)$

Malle's constant $a(G)$:     $1/8$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 2B 4A1 4A-1 4B 8A1 8A-1 8B1 8B3 8C1 8C-1 8D1 8D-1 17A1 17A3 17B1 17B3 17C1 17C3 17D1 17D2 17D3 17D6 34A1 34A3
Size 1 34 289 289 289 578 578 578 578 578 1156 1156 1156 1156 16 16 32 32 32 32 32 32 32 32 272 272
2 P 1A 1A 1A 2B 2B 2B 4B 4B 4B 4B 4A1 4A-1 4A1 4A-1 17A1 17A3 17B1 17B3 17C1 17C3 17D2 17D1 17D6 17D3 17A1 17A3
17 P 1A 2A 2B 4A1 4A-1 4B 8A1 8A-1 8B1 8B3 8C1 8C-1 8D1 8D-1 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 2A 2A
Type
9248.y.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.1e1 C 1 1 1 1 1 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.1e2 C 1 1 1 1 1 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.1f1 C 1 1 1 1 1 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.1f2 C 1 1 1 1 1 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1
9248.y.2a R 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
9248.y.2b S 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2
9248.y.2c1 C 2 0 2 2ζ82 2ζ82 0 ζ8ζ83 ζ8+ζ83 ζ81ζ8 ζ81+ζ8 0 0 0 0 2 2 2 2 2 2 2 2 2 2 0 0
9248.y.2c2 C 2 0 2 2ζ82 2ζ82 0 ζ8+ζ83 ζ8ζ83 ζ81ζ8 ζ81+ζ8 0 0 0 0 2 2 2 2 2 2 2 2 2 2 0 0
9248.y.2c3 C 2 0 2 2ζ82 2ζ82 0 ζ8+ζ83 ζ8ζ83 ζ81+ζ8 ζ81ζ8 0 0 0 0 2 2 2 2 2 2 2 2 2 2 0 0
9248.y.2c4 C 2 0 2 2ζ82 2ζ82 0 ζ8ζ83 ζ8+ζ83 ζ81+ζ8 ζ81ζ8 0 0 0 0 2 2 2 2 2 2 2 2 2 2 0 0
9248.y.16a1 R 16 8 0 0 0 0 0 0 0 0 0 0 0 0 ζ177+ζ176+ζ175+ζ173+8+ζ173+ζ175+ζ176+ζ177 ζ177ζ176ζ175ζ173+7ζ173ζ175ζ176ζ177 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 1 1 1 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 1 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 ζ177+ζ176+ζ175+ζ173+ζ173+ζ175+ζ176+ζ177 ζ177ζ176ζ175ζ1731ζ173ζ175ζ176ζ177
9248.y.16a2 R 16 8 0 0 0 0 0 0 0 0 0 0 0 0 ζ177ζ176ζ175ζ173+7ζ173ζ175ζ176ζ177 ζ177+ζ176+ζ175+ζ173+8+ζ173+ζ175+ζ176+ζ177 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 1 1 1 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 1 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 ζ177ζ176ζ175ζ1731ζ173ζ175ζ176ζ177 ζ177+ζ176+ζ175+ζ173+ζ173+ζ175+ζ176+ζ177
9248.y.16b1 R 16 8 0 0 0 0 0 0 0 0 0 0 0 0 ζ177+ζ176+ζ175+ζ173+8+ζ173+ζ175+ζ176+ζ177 ζ177ζ176ζ175ζ173+7ζ173ζ175ζ176ζ177 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 1 1 1 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 1 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 ζ177ζ176ζ175ζ173ζ173ζ175ζ176ζ177 ζ177+ζ176+ζ175+ζ173+1+ζ173+ζ175+ζ176+ζ177
9248.y.16b2 R 16 8 0 0 0 0 0 0 0 0 0 0 0 0 ζ177ζ176ζ175ζ173+7ζ173ζ175ζ176ζ177 ζ177+ζ176+ζ175+ζ173+8+ζ173+ζ175+ζ176+ζ177 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 1 1 1 2ζ1772ζ1762ζ1752ζ17322ζ1732ζ1752ζ1762ζ177 1 2ζ177+2ζ176+2ζ175+2ζ173+2ζ173+2ζ175+2ζ176+2ζ177 ζ177+ζ176+ζ175+ζ173+1+ζ173+ζ175+ζ176+ζ177 ζ177ζ176ζ175ζ173ζ173ζ175ζ176ζ177
9248.y.32a1 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 4ζ177+4ζ176+4ζ175+4ζ173+4ζ173+4ζ175+4ζ176+4ζ177 4ζ1774ζ1764ζ1754ζ17344ζ1734ζ1754ζ1764ζ177 2 2 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 ζ177ζ176ζ175ζ173+6ζ173ζ175ζ176ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 ζ177+ζ176+ζ175+ζ173+7+ζ173+ζ175+ζ176+ζ177 0 0
9248.y.32a2 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 4ζ1774ζ1764ζ1754ζ17344ζ1734ζ1754ζ1764ζ177 4ζ177+4ζ176+4ζ175+4ζ173+4ζ173+4ζ175+4ζ176+4ζ177 2 2 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 ζ177+ζ176+ζ175+ζ173+7+ζ173+ζ175+ζ176+ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 ζ177ζ176ζ175ζ173+6ζ173ζ175ζ176ζ177 0 0
9248.y.32b1 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 4ζ177+4ζ176+4ζ175+4ζ173+4ζ173+4ζ175+4ζ176+4ζ177 4ζ1774ζ1764ζ1754ζ17344ζ1734ζ1754ζ1764ζ177 ζ177+ζ176+ζ175+ζ173+7+ζ173+ζ175+ζ176+ζ177 ζ177ζ176ζ175ζ173+6ζ173ζ175ζ176ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2 0 0
9248.y.32b2 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 4ζ1774ζ1764ζ1754ζ17344ζ1734ζ1754ζ1764ζ177 4ζ177+4ζ176+4ζ175+4ζ173+4ζ173+4ζ175+4ζ176+4ζ177 ζ177ζ176ζ175ζ173+6ζ173ζ175ζ176ζ177 ζ177+ζ176+ζ175+ζ173+7+ζ173+ζ175+ζ176+ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2 0 0
9248.y.32c1 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 ζ178+2ζ177+2ζ1762ζ1752ζ173ζ172+2ζ1722ζ1732ζ175+2ζ176+2ζ177ζ178 4ζ178+2ζ177+2ζ176+ζ175+ζ173+4ζ172+4+4ζ172+ζ173+ζ175+2ζ176+2ζ177+4ζ178 4ζ1783ζ1773ζ1762ζ1752ζ1734ζ1724ζ1722ζ1732ζ1753ζ1763ζ1774ζ178 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 ζ178ζ177ζ176+3ζ175+3ζ173+ζ172+3+ζ172+3ζ173+3ζ175ζ176ζ177+ζ178 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 0 0
9248.y.32c2 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 ζ178ζ177ζ176+3ζ175+3ζ173+ζ172+3+ζ172+3ζ173+3ζ175ζ176ζ177+ζ178 4ζ1783ζ1773ζ1762ζ1752ζ1734ζ1724ζ1722ζ1732ζ1753ζ1763ζ1774ζ178 4ζ178+2ζ177+2ζ176+ζ175+ζ173+4ζ172+4+4ζ172+ζ173+ζ175+2ζ176+2ζ177+4ζ178 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 ζ178+2ζ177+2ζ1762ζ1752ζ173ζ172+2ζ1722ζ1732ζ175+2ζ176+2ζ177ζ178 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 0 0
9248.y.32c3 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 4ζ178+2ζ177+2ζ176+ζ175+ζ173+4ζ172+4+4ζ172+ζ173+ζ175+2ζ176+2ζ177+4ζ178 ζ178ζ177ζ176+3ζ175+3ζ173+ζ172+3+ζ172+3ζ173+3ζ175ζ176ζ177+ζ178 ζ178+2ζ177+2ζ1762ζ1752ζ173ζ172+2ζ1722ζ1732ζ175+2ζ176+2ζ177ζ178 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 4ζ1783ζ1773ζ1762ζ1752ζ1734ζ1724ζ1722ζ1732ζ1753ζ1763ζ1774ζ178 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 0 0
9248.y.32c4 R 32 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 4ζ1783ζ1773ζ1762ζ1752ζ1734ζ1724ζ1722ζ1732ζ1753ζ1763ζ1774ζ178 ζ178+2ζ177+2ζ1762ζ1752ζ173ζ172+2ζ1722ζ1732ζ175+2ζ176+2ζ177ζ178 ζ178ζ177ζ176+3ζ175+3ζ173+ζ172+3+ζ172+3ζ173+3ζ175ζ176ζ177+ζ178 2ζ1772ζ1762ζ1752ζ17332ζ1732ζ1752ζ1762ζ177 4ζ178+2ζ177+2ζ176+ζ175+ζ173+4ζ172+4+4ζ172+ζ173+ζ175+2ζ176+2ζ177+4ζ178 2ζ177+2ζ176+2ζ175+2ζ1731+2ζ173+2ζ175+2ζ176+2ζ177 0 0

magma: CharacterTable(G);
 

Regular extensions

Data not computed