Group action invariants
| Degree $n$ : | $34$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $D_{34}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5,10,14,17,22,25,29,33,3,8,11,16,20,23,27,32,2,6,9,13,18,21,26,30,34,4,7,12,15,19,24,28,31), (1,24)(2,23)(3,21)(4,22)(5,19)(6,20)(7,17)(8,18)(9,16)(10,15)(11,13)(12,14)(25,34)(26,33)(27,32)(28,31)(29,30) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 34: $D_{17}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 17: $D_{17}$
Low degree siblings
34T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $17$ | $2$ | $( 3,34)( 4,33)( 5,31)( 6,32)( 7,29)( 8,30)( 9,27)(10,28)(11,26)(12,25)(13,23) (14,24)(15,22)(16,21)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $17$ | $2$ | $( 1, 2)( 3,33)( 4,34)( 5,32)( 6,31)( 7,30)( 8,29)( 9,28)(10,27)(11,25)(12,26) (13,24)(14,23)(15,21)(16,22)(17,20)(18,19)$ |
| $ 34 $ | $2$ | $34$ | $( 1, 3, 6, 7,10,11,13,15,17,20,21,24,25,27,30,31,33, 2, 4, 5, 8, 9,12,14,16, 18,19,22,23,26,28,29,32,34)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1, 4, 6, 8,10,12,13,16,17,19,21,23,25,28,30,32,33)( 2, 3, 5, 7, 9,11,14,15, 18,20,22,24,26,27,29,31,34)$ |
| $ 34 $ | $2$ | $34$ | $( 1, 5,10,14,17,22,25,29,33, 3, 8,11,16,20,23,27,32, 2, 6, 9,13,18,21,26,30, 34, 4, 7,12,15,19,24,28,31)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1, 6,10,13,17,21,25,30,33, 4, 8,12,16,19,23,28,32)( 2, 5, 9,14,18,22,26,29, 34, 3, 7,11,15,20,24,27,31)$ |
| $ 34 $ | $2$ | $34$ | $( 1, 7,13,20,25,31, 4, 9,16,22,28,34, 6,11,17,24,30, 2, 8,14,19,26,32, 3,10, 15,21,27,33, 5,12,18,23,29)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1, 8,13,19,25,32, 4,10,16,21,28,33, 6,12,17,23,30)( 2, 7,14,20,26,31, 3, 9, 15,22,27,34, 5,11,18,24,29)$ |
| $ 34 $ | $2$ | $34$ | $( 1, 9,17,26,33, 7,16,24,32, 5,13,22,30, 3,12,20,28, 2,10,18,25,34, 8,15,23, 31, 6,14,21,29, 4,11,19,27)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1,10,17,25,33, 8,16,23,32, 6,13,21,30, 4,12,19,28)( 2, 9,18,26,34, 7,15,24, 31, 5,14,22,29, 3,11,20,27)$ |
| $ 34 $ | $2$ | $34$ | $( 1,11,21,31, 8,18,28, 3,13,24,33, 9,19,29, 6,15,25, 2,12,22,32, 7,17,27, 4, 14,23,34,10,20,30, 5,16,26)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1,12,21,32, 8,17,28, 4,13,23,33,10,19,30, 6,16,25)( 2,11,22,31, 7,18,27, 3, 14,24,34, 9,20,29, 5,15,26)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1,13,25, 4,16,28, 6,17,30, 8,19,32,10,21,33,12,23)( 2,14,26, 3,15,27, 5,18, 29, 7,20,31, 9,22,34,11,24)$ |
| $ 34 $ | $2$ | $34$ | $( 1,14,25, 3,16,27, 6,18,30, 7,19,31,10,22,33,11,23, 2,13,26, 4,15,28, 5,17, 29, 8,20,32, 9,21,34,12,24)$ |
| $ 34 $ | $2$ | $34$ | $( 1,15,30, 9,23, 3,17,31,12,26, 6,20,33,14,28, 7,21, 2,16,29,10,24, 4,18,32, 11,25, 5,19,34,13,27, 8,22)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1,16,30,10,23, 4,17,32,12,25, 6,19,33,13,28, 8,21)( 2,15,29, 9,24, 3,18,31, 11,26, 5,20,34,14,27, 7,22)$ |
| $ 17, 17 $ | $2$ | $17$ | $( 1,17,33,16,32,13,30,12,28,10,25, 8,23, 6,21, 4,19)( 2,18,34,15,31,14,29,11, 27, 9,26, 7,24, 5,22, 3,20)$ |
| $ 34 $ | $2$ | $34$ | $( 1,18,33,15,32,14,30,11,28, 9,25, 7,23, 5,21, 3,19, 2,17,34,16,31,13,29,12, 27,10,26, 8,24, 6,22, 4,20)$ |
Group invariants
| Order: | $68=2^{2} \cdot 17$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [68, 4] |
| Character table: |
2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 . 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1a 2a 2b 2c 34a 17a 34b 17b 34c 17c 34d 17d 34e 17e 17f 34f 34g 17g
2P 1a 1a 1a 1a 17b 17b 17d 17d 17f 17f 17h 17h 17g 17g 17e 17e 17c 17c
3P 1a 2a 2b 2c 34c 17c 34f 17f 34h 17h 34e 17e 34b 17b 17a 34a 34d 17d
5P 1a 2a 2b 2c 34e 17e 34g 17g 34b 17b 34c 17c 34h 17h 17d 34d 34a 17a
7P 1a 2a 2b 2c 34g 17g 34c 17c 34d 17d 34f 17f 34a 17a 17h 34h 34b 17b
11P 1a 2a 2b 2c 34f 17f 34e 17e 34a 17a 34g 17g 34d 17d 17b 34b 34h 17h
13P 1a 2a 2b 2c 34d 17d 34h 17h 34e 17e 34a 17a 34c 17c 17g 34g 34f 17f
17P 1a 2a 2b 2c 2b 1a 2b 1a 2b 1a 2b 1a 2b 1a 1a 2b 2b 1a
19P 1a 2a 2b 2c 34b 17b 34d 17d 34f 17f 34h 17h 34g 17g 17e 34e 34c 17c
23P 1a 2a 2b 2c 34f 17f 34e 17e 34a 17a 34g 17g 34d 17d 17b 34b 34h 17h
29P 1a 2a 2b 2c 34e 17e 34g 17g 34b 17b 34c 17c 34h 17h 17d 34d 34a 17a
31P 1a 2a 2b 2c 34c 17c 34f 17f 34h 17h 34e 17e 34b 17b 17a 34a 34d 17d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1
X.3 1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.4 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1
X.5 2 . 2 . A A E E D D B B F F G G H H
X.6 2 . 2 . B B C C F F A A D D H H G G
X.7 2 . 2 . C C A A H H E E G G D D F F
X.8 2 . 2 . D D G G C C F F E E A A B B
X.9 2 . 2 . E E B B G G C C H H F F D D
X.10 2 . 2 . F F H H E E D D C C B B A A
X.11 2 . 2 . G G F F A A H H B B E E C C
X.12 2 . 2 . H H D D B B G G A A C C E E
X.13 2 . -2 . -A A -E E -D D -B B -F F G -G -H H
X.14 2 . -2 . -B B -C C -F F -A A -D D H -H -G G
X.15 2 . -2 . -C C -A A -H H -E E -G G D -D -F F
X.16 2 . -2 . -D D -G G -C C -F F -E E A -A -B B
X.17 2 . -2 . -E E -B B -G G -C C -H H F -F -D D
X.18 2 . -2 . -F F -H H -E E -D D -C C B -B -A A
X.19 2 . -2 . -G G -F F -A A -H H -B B E -E -C C
X.20 2 . -2 . -H H -D D -B B -G G -A A C -C -E E
2 1 1
17 1 1
17h 34h
2P 17a 17a
3P 17g 34g
5P 17f 34f
7P 17e 34e
11P 17c 34c
13P 17b 34b
17P 1a 2b
19P 17a 34a
23P 17c 34c
29P 17f 34f
31P 17g 34g
X.1 1 1
X.2 1 -1
X.3 1 1
X.4 1 -1
X.5 C C
X.6 E E
X.7 B B
X.8 H H
X.9 A A
X.10 G G
X.11 D D
X.12 F F
X.13 C -C
X.14 E -E
X.15 B -B
X.16 H -H
X.17 A -A
X.18 G -G
X.19 D -D
X.20 F -F
A = E(17)^5+E(17)^12
B = E(17)^3+E(17)^14
C = E(17)^6+E(17)^11
D = E(17)^2+E(17)^15
E = E(17)^7+E(17)^10
F = E(17)^8+E(17)^9
G = E(17)^4+E(17)^13
H = E(17)+E(17)^16
|