Show commands:
Magma
magma: G := TransitiveGroup(34, 18);
Group invariants
Abstract group: | $C_2^8:C_{17}$ | magma: IdentifyGroup(G);
| |
Order: | $4352=2^{8} \cdot 17$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $34$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $18$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,11,21,31,7,18,28,3,13,23,33,9,19,30,5,15,25)(2,12,22,32,8,17,27,4,14,24,34,10,20,29,6,16,26)$, $(1,5,9,13,18,21,25,30,34,4,8,11,16,19,24,27,32)(2,6,10,14,17,22,26,29,33,3,7,12,15,20,23,28,31)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $17$: $C_{17}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 17: $C_{17}$
Low degree siblings
34T18 x 14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
$1^{34}$ | $1$ | $1$ | $0$ | $()$ | |
$2^{8},1^{18}$ | $17$ | $2$ | $8$ | $( 5, 6)( 9,10)(11,12)(15,16)(21,22)(23,24)(31,32)(33,34)$ | |
$2^{6},1^{22}$ | $17$ | $2$ | $6$ | $( 5, 6)( 7, 8)(11,12)(19,20)(23,24)(25,26)$ | |
$2^{8},1^{18}$ | $17$ | $2$ | $8$ | $( 1, 2)( 5, 6)( 9,10)(11,12)(17,18)(23,24)(29,30)(31,32)$ | |
$2^{12},1^{10}$ | $17$ | $2$ | $12$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(29,30)(33,34)$ | |
$2^{6},1^{22}$ | $17$ | $2$ | $6$ | $( 9,10)(13,14)(17,18)(21,22)(31,32)(33,34)$ | |
$2^{6},1^{22}$ | $17$ | $2$ | $6$ | $( 5, 6)(11,12)(13,14)(15,16)(17,18)(23,24)$ | |
$2^{12},1^{10}$ | $17$ | $2$ | $12$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(17,18)(19,20)(21,22)(23,24)(25,26)(31,32)(33,34)$ | |
$2^{8},1^{18}$ | $17$ | $2$ | $8$ | $( 3, 4)(11,12)(17,18)(21,22)(23,24)(25,26)(27,28)(31,32)$ | |
$2^{10},1^{14}$ | $17$ | $2$ | $10$ | $( 3, 4)( 7, 8)( 9,10)(11,12)(15,16)(17,18)(19,20)(23,24)(27,28)(33,34)$ | |
$2^{8},1^{18}$ | $17$ | $2$ | $8$ | $( 3, 4)( 5, 6)( 7, 8)(17,18)(19,20)(21,22)(27,28)(31,32)$ | |
$2^{10},1^{14}$ | $17$ | $2$ | $10$ | $( 1, 2)( 3, 4)(11,12)(15,16)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)$ | |
$2^{8},1^{18}$ | $17$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 9,10)(21,22)(25,26)(27,28)(29,30)$ | |
$2^{10},1^{14}$ | $17$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(11,12)(19,20)(21,22)(23,24)(27,28)(29,30)$ | |
$2^{10},1^{14}$ | $17$ | $2$ | $10$ | $(11,12)(13,14)(15,16)(17,18)(21,22)(23,24)(27,28)(29,30)(31,32)(33,34)$ | |
$2^{6},1^{22}$ | $17$ | $2$ | $6$ | $( 1, 2)( 3, 4)(11,12)(21,22)(29,30)(31,32)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,11,21,31, 7,18,28, 3,13,23,33, 9,19,30, 5,15,25)( 2,12,22,32, 8,17,27, 4,14,24,34,10,20,29, 6,16,26)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,31,28,23,19,15,11, 7, 3,33,30,25,21,18,13, 9, 5)( 2,32,27,24,20,16,12, 8, 4,34,29,26,22,17,14,10, 6)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,23,11,33,21, 9,31,19, 7,30,18, 5,28,15, 3,25,13)( 2,24,12,34,22,10,32,20, 8,29,17, 6,27,16, 4,26,14)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,33,31,30,28,25,23,21,19,18,15,13,11, 9, 7, 5, 3)( 2,34,32,29,27,26,24,22,20,17,16,14,12,10, 8, 6, 4)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,30,23,18,11, 5,33,28,21,15, 9, 3,31,25,19,13, 7)( 2,29,24,17,12, 6,34,27,22,16,10, 4,32,26,20,14, 8)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,18,33,15,31,13,30,11,28, 9,25, 7,23, 5,21, 3,19)( 2,17,34,16,32,14,29,12,27,10,26, 8,24, 6,22, 4,20)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,15,30, 9,23, 3,18,31,11,25, 5,19,33,13,28, 7,21)( 2,16,29,10,24, 4,17,32,12,26, 6,20,34,14,27, 8,22)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1, 9,18,25,33, 7,15,23,31, 5,13,21,30, 3,11,19,28)( 2,10,17,26,34, 8,16,24,32, 6,14,22,29, 4,12,20,27)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,25,15, 5,30,19, 9,33,23,13, 3,28,18, 7,31,21,11)( 2,26,16, 6,29,20,10,34,24,14, 4,27,17, 8,32,22,12)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1, 5, 9,13,18,21,25,30,33, 3, 7,11,15,19,23,28,31)( 2, 6,10,14,17,22,26,29,34, 4, 8,12,16,20,24,27,32)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,13,25, 3,15,28, 5,18,30, 7,19,31, 9,21,33,11,23)( 2,14,26, 4,16,27, 6,17,29, 8,20,32,10,22,34,12,24)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1, 3, 5, 7, 9,11,13,15,18,19,21,23,25,28,30,31,33)( 2, 4, 6, 8,10,12,14,16,17,20,22,24,26,27,29,32,34)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1, 7,13,19,25,31, 3, 9,15,21,28,33, 5,11,18,23,30)( 2, 8,14,20,26,32, 4,10,16,22,27,34, 6,12,17,24,29)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,19, 3,21, 5,23, 7,25, 9,28,11,30,13,31,15,33,18)( 2,20, 4,22, 6,24, 8,26,10,27,12,29,14,32,16,34,17)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,21, 7,28,13,33,19, 5,25,11,31,18, 3,23, 9,30,15)( 2,22, 8,27,14,34,20, 6,26,12,32,17, 4,24,10,29,16)$ | |
$17^{2}$ | $256$ | $17$ | $32$ | $( 1,28,19,11, 3,30,21,13, 5,31,23,15, 7,33,25,18, 9)( 2,27,20,12, 4,29,22,14, 6,32,24,16, 8,34,26,17,10)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
32 x 32 character tablemagma: CharacterTable(G);
Regular extensions
Data not computed