Show commands:
Magma
magma: G := TransitiveGroup(34, 17);
Group invariants
Abstract group: | $C_{17}^2:C_8$ | magma: IdentifyGroup(G);
| |
Order: | $2312=2^{3} \cdot 17^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $34$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $17$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,15,12,9,6,3,17,14,11,8,5,2,16,13,10,7,4)(18,23,28,33,21,26,31,19,24,29,34,22,27,32,20,25,30)$, $(1,24,16,19,7,22,9,27)(2,18,12,26,6,28,13,20)(3,29,8,33,5,34,17,30)(4,23)(10,21,14,31,15,25,11,32)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ $136$: $C_{17}:C_{8}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 17: None
Low degree siblings
34T17 x 7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{34}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16},1^{2}$ | $289$ | $2$ | $16$ | $( 1,13)( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)(14,17)(15,16)(18,20)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)$ |
4A1 | $4^{8},1^{2}$ | $289$ | $4$ | $24$ | $( 1,17,13,14)( 2, 4,12,10)( 3, 8,11, 6)( 5,16, 9,15)(18,32,20,23)(21,27,34,28)(22,31,33,24)(25,26,30,29)$ |
4A-1 | $4^{8},1^{2}$ | $289$ | $4$ | $24$ | $( 1,14,13,17)( 2,10,12, 4)( 3, 6,11, 8)( 5,15, 9,16)(18,23,20,32)(21,28,34,27)(22,24,33,31)(25,29,30,26)$ |
8A1 | $8^{4},2$ | $289$ | $8$ | $29$ | $( 1,27,17,34,13,28,14,21)( 2,20, 4,23,12,18,10,32)( 3,30, 8,29,11,25, 6,26)( 5,33,16,24, 9,22,15,31)( 7,19)$ |
8A-1 | $8^{4},2$ | $289$ | $8$ | $29$ | $( 1,21,14,28,13,34,17,27)( 2,32,10,18,12,23, 4,20)( 3,26, 6,25,11,29, 8,30)( 5,31,15,22, 9,24,16,33)( 7,19)$ |
8A3 | $8^{4},2$ | $289$ | $8$ | $29$ | $( 1,34,14,27,13,21,17,28)( 2,23,10,20,12,32, 4,18)( 3,29, 6,30,11,26, 8,25)( 5,24,15,33, 9,31,16,22)( 7,19)$ |
8A-3 | $8^{4},2$ | $289$ | $8$ | $29$ | $( 1,28,17,21,13,27,14,34)( 2,18, 4,32,12,20,10,23)( 3,25, 8,26,11,30, 6,29)( 5,22,16,31, 9,33,15,24)( 7,19)$ |
17A1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,15,12, 9, 6, 3,17,14,11, 8, 5, 2,16,13,10, 7, 4)(18,33,31,29,27,25,23,21,19,34,32,30,28,26,24,22,20)$ |
17A3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 3, 5, 7, 9,11,13,15,17, 2, 4, 6, 8,10,12,14,16)(18,25,32,22,29,19,26,33,23,30,20,27,34,24,31,21,28)$ |
17B1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 8,15, 5,12, 2, 9,16, 6,13, 3,10,17, 7,14, 4,11)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)$ |
17B3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(18,30,25,20,32,27,22,34,29,24,19,31,26,21,33,28,23)$ |
17C1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,12, 6,17,11, 5,16,10, 4,15, 9, 3,14, 8, 2,13, 7)(18,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19)$ |
17C2 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 6,11,16, 4, 9,14, 2, 7,12,17, 5,10,15, 3, 8,13)(18,33,31,29,27,25,23,21,19,34,32,30,28,26,24,22,20)$ |
17C3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(18,32,29,26,23,20,34,31,28,25,22,19,33,30,27,24,21)$ |
17C6 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,16,14,12,10, 8, 6, 4, 2,17,15,13,11, 9, 7, 5, 3)(18,29,23,34,28,22,33,27,21,32,26,20,31,25,19,30,24)$ |
17D1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 5, 9,13,17, 4, 8,12,16, 3, 7,11,15, 2, 6,10,14)(18,20,22,24,26,28,30,32,34,19,21,23,25,27,29,31,33)$ |
17D2 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 9,17, 8,16, 7,15, 6,14, 5,13, 4,12, 3,11, 2,10)(18,22,26,30,34,21,25,29,33,20,24,28,32,19,23,27,31)$ |
17D3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)(18,24,30,19,25,31,20,26,32,21,27,33,22,28,34,23,29)$ |
17D6 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 8,15, 5,12, 2, 9,16, 6,13, 3,10,17, 7,14, 4,11)(18,30,25,20,32,27,22,34,29,24,19,31,26,21,33,28,23)$ |
17E1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,16,14,12,10, 8, 6, 4, 2,17,15,13,11, 9, 7, 5, 3)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)$ |
17E2 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,14,10, 6, 2,15,11, 7, 3,16,12, 8, 4,17,13, 9, 5)(18,20,22,24,26,28,30,32,34,19,21,23,25,27,29,31,33)$ |
17E3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,12, 6,17,11, 5,16,10, 4,15, 9, 3,14, 8, 2,13, 7)(18,21,24,27,30,33,19,22,25,28,31,34,20,23,26,29,32)$ |
17E6 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 6,11,16, 4, 9,14, 2, 7,12,17, 5,10,15, 3, 8,13)(18,24,30,19,25,31,20,26,32,21,27,33,22,28,34,23,29)$ |
17F1 | $17,1^{17}$ | $8$ | $17$ | $16$ | $( 1,10, 2,11, 3,12, 4,13, 5,14, 6,15, 7,16, 8,17, 9)$ |
17F2 | $17,1^{17}$ | $8$ | $17$ | $16$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17)$ |
17F3 | $17,1^{17}$ | $8$ | $17$ | $16$ | $( 1,11, 4,14, 7,17,10, 3,13, 6,16, 9, 2,12, 5,15, 8)$ |
17F6 | $17,1^{17}$ | $8$ | $17$ | $16$ | $(18,22,26,30,34,21,25,29,33,20,24,28,32,19,23,27,31)$ |
17G1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 3, 5, 7, 9,11,13,15,17, 2, 4, 6, 8,10,12,14,16)(18,21,24,27,30,33,19,22,25,28,31,34,20,23,26,29,32)$ |
17G2 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 5, 9,13,17, 4, 8,12,16, 3, 7,11,15, 2, 6,10,14)(18,24,30,19,25,31,20,26,32,21,27,33,22,28,34,23,29)$ |
17G3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 7,13, 2, 8,14, 3, 9,15, 4,10,16, 5,11,17, 6,12)(18,33,31,29,27,25,23,21,19,34,32,30,28,26,24,22,20)$ |
17G6 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 4, 7,10,13,16, 2, 5, 8,11,14,17, 3, 6, 9,12,15)(18,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19)$ |
17H1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 7,13, 2, 8,14, 3, 9,15, 4,10,16, 5,11,17, 6,12)(18,23,28,33,21,26,31,19,24,29,34,22,27,32,20,25,30)$ |
17H2 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)(18,28,21,31,24,34,27,20,30,23,33,26,19,29,22,32,25)$ |
17H3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,11, 4,14, 7,17,10, 3,13, 6,16, 9, 2,12, 5,15, 8)(18,29,23,34,28,22,33,27,21,32,26,20,31,25,19,30,24)$ |
17H6 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 3, 5, 7, 9,11,13,15,17, 2, 4, 6, 8,10,12,14,16)(18,31,27,23,19,32,28,24,20,33,29,25,21,34,30,26,22)$ |
17I1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 9,17, 8,16, 7,15, 6,14, 5,13, 4,12, 3,11, 2,10)(18,32,29,26,23,20,34,31,28,25,22,19,33,30,27,24,21)$ |
17I2 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,14,10, 6, 2,15,11, 7, 3,16,12, 8, 4,17,13, 9, 5)(18,24,30,19,25,31,20,26,32,21,27,33,22,28,34,23,29)$ |
17I3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 7,13, 2, 8,14, 3, 9,15, 4,10,16, 5,11,17, 6,12)(18,26,34,25,33,24,32,23,31,22,30,21,29,20,28,19,27)$ |
17I6 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)(18,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19)$ |
17J1 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 8,15, 5,12, 2, 9,16, 6,13, 3,10,17, 7,14, 4,11)(18,29,23,34,28,22,33,27,21,32,26,20,31,25,19,30,24)$ |
17J2 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)(18,32,29,26,23,20,34,31,28,25,22,19,33,30,27,24,21)$ |
17J3 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1, 5, 9,13,17, 4, 8,12,16, 3, 7,11,15, 2, 6,10,14)(18,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19)$ |
17J6 | $17^{2}$ | $8$ | $17$ | $32$ | $( 1,16,14,12,10, 8, 6, 4, 2,17,15,13,11, 9, 7, 5, 3)(18,27,19,28,20,29,21,30,22,31,23,32,24,33,25,34,26)$ |
Malle's constant $a(G)$: $1/16$
magma: ConjugacyClasses(G);
Character table
44 x 44 character tablemagma: CharacterTable(G);
Regular extensions
Data not computed