Label 34T16
Degree $34$
Order $2312$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more

Group action invariants

Degree $n$:  $34$
Transitive number $t$:  $16$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,31,9,24)(2,28,8,27)(3,25,7,30)(4,22,6,33)(5,19)(10,21,17,34)(11,18,16,20)(12,32,15,23)(13,29,14,26), (1,32,12,28,6,24,17,20,11,33,5,29,16,25,10,21,4,34,15,30,9,26,3,22,14,18,8,31,2,27,13,23,7,19)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $C_4\times C_2$
$68$:  $C_{17}:C_{4}$ x 2
$136$:  34T5 x 2

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 17: None

Low degree siblings

34T16 x 7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 56 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2312=2^{3} \cdot 17^{2}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.