Properties

 Label 33T30 Degree $33$ Order $13365$ Cyclic no Abelian no Solvable yes Primitive no $p$-group no

Group action invariants

 Degree $n$: $33$ Transitive number $t$: $30$ Parity: $1$ Primitive: no Nilpotency class: $-1$ (not nilpotent) $|\Aut(F/K)|$: $3$ Generators: (1,28,22,16,11,5,31,25,20,13,8)(2,29,23,17,12,6,32,26,21,14,9)(3,30,24,18,10,4,33,27,19,15,7), (1,30,4,9,21)(2,28,5,7,19)(3,29,6,8,20)(10,33,18,22,14)(11,31,16,23,15)(12,32,17,24,13)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$5$:  $C_5$
$55$:  $C_{11}:C_5$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 11: $C_{11}:C_5$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

 Cycle Type Size Order Representative $1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $1$ $1$ $()$ $3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1$ $55$ $3$ $( 4, 5, 6)( 7, 9, 8)(10,12,11)(13,14,15)(16,18,17)(19,20,21)(22,24,23) (25,27,26)(31,33,32)$ $3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1$ $55$ $3$ $( 4, 6, 5)( 7, 8, 9)(10,11,12)(13,15,14)(16,17,18)(19,21,20)(22,23,24) (25,26,27)(31,32,33)$ $3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $11$ $3$ $( 1, 2, 3)( 4, 5, 6)(16,17,18)(22,23,24)(25,26,27)(31,32,33)$ $3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $55$ $3$ $( 1, 2, 3)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,14,15)(19,20,21)$ $3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $55$ $3$ $( 1, 3, 2)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,15,14)(19,21,20)$ $3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $11$ $3$ $( 1, 3, 2)( 4, 6, 5)(16,18,17)(22,24,23)(25,27,26)(31,33,32)$ $11, 11, 11$ $1215$ $11$ $( 1,28,22,16,11, 5,31,25,20,13, 8)( 2,29,23,17,12, 6,32,26,21,14, 9) ( 3,30,24,18,10, 4,33,27,19,15, 7)$ $11, 11, 11$ $1215$ $11$ $( 1,22,11,31,20, 8,28,16, 5,25,13)( 2,23,12,32,21, 9,29,17, 6,26,14) ( 3,24,10,33,19, 7,30,18, 4,27,15)$ $5, 5, 5, 5, 5, 5, 1, 1, 1$ $891$ $5$ $( 1,26,22,11,28)( 2,27,23,12,29)( 3,25,24,10,30)( 7,17,20,32,15) ( 8,18,21,33,13)( 9,16,19,31,14)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,25,23,11,28)( 2,26,24,12,29)( 3,27,22,10,30)( 4, 5, 6)( 7,16,20,31,15, 9, 18,19,33,14, 8,17,21,32,13)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,27,24,11,28)( 2,25,22,12,29)( 3,26,23,10,30)( 4, 6, 5)( 7,18,20,33,15, 8, 16,21,31,13, 9,17,19,32,14)$ $5, 5, 5, 5, 5, 5, 1, 1, 1$ $891$ $5$ $( 1,22,28,26,11)( 2,23,29,27,12)( 3,24,30,25,10)( 7,20,15,17,32) ( 8,21,13,18,33)( 9,19,14,16,31)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,24,30,27,11)( 2,22,28,25,12)( 3,23,29,26,10)( 4, 5, 6)( 7,21,14,18,32, 9, 20,13,17,31, 8,19,15,16,33)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,23,29,25,11)( 2,24,30,26,12)( 3,22,28,27,10)( 4, 6, 5)( 7,19,13,16,32, 8, 20,14,17,33, 9,21,15,18,31)$ $5, 5, 5, 5, 5, 5, 1, 1, 1$ $891$ $5$ $( 1,28,11,22,26)( 2,29,12,23,27)( 3,30,10,24,25)( 7,15,32,20,17) ( 8,13,33,21,18)( 9,14,31,19,16)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,28,10,23,26)( 2,29,11,24,27)( 3,30,12,22,25)( 4, 5, 6)( 7,13,32,21,17, 9, 15,31,20,16, 8,14,33,19,18)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,28,12,24,26)( 2,29,10,22,27)( 3,30,11,23,25)( 4, 6, 5)( 7,14,32,19,17, 8, 15,33,20,18, 9,13,31,21,16)$ $5, 5, 5, 5, 5, 5, 1, 1, 1$ $891$ $5$ $( 1,11,26,28,22)( 2,12,27,29,23)( 3,10,25,30,24)( 7,32,17,15,20) ( 8,33,18,13,21)( 9,31,16,14,19)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,10,27,29,22)( 2,11,25,30,23)( 3,12,26,28,24)( 4, 5, 6)( 7,31,18,14,20, 9, 33,17,13,19, 8,32,16,15,21)$ $15, 5, 5, 5, 3$ $891$ $15$ $( 1,12,25,30,22)( 2,10,26,28,23)( 3,11,27,29,24)( 4, 6, 5)( 7,33,16,13,20, 8, 31,17,14,21, 9,32,18,15,19)$

Group invariants

 Order: $13365=3^{5} \cdot 5 \cdot 11$ Cyclic: no Abelian: no Solvable: yes GAP id: not available
 Character table: not available.