Group action invariants
| Degree $n$ : | $32$ | |
| Transitive number $t$ : | $50$ | |
| Group : | $Q_8:C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,10,2,9)(3,11,4,12)(5,14,6,13)(7,16,8,15)(17,25,18,26)(19,27,20,28)(21,29,22,30)(23,31,24,32), (1,23,11,15,2,24,12,16)(3,22,9,13,4,21,10,14)(5,26,30,20,6,25,29,19)(7,28,31,17,8,27,32,18) | |
| $|\Aut(F/K)|$: | $32$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $QD_{16}$, $C_2^2:C_4$, $Q_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $QD_{16}$, $C_2^2:C_4$ x 2
Degree 16: $C_2^2 : C_4$, $QD_{16}$, $Q_{16}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,22, 6,21)( 7,23, 8,24)( 9,11,10,12)(13,30,14,29)(15,31,16,32) (17,19,18,20)(25,28,26,27)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 5,12,29, 2, 6,11,30)( 3, 8,10,31, 4, 7, 9,32)(13,18,22,27,14,17,21,28) (15,20,23,26,16,19,24,25)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 6,12,30, 2, 5,11,29)( 3, 7,10,32, 4, 8, 9,31)(13,17,22,28,14,18,21,27) (15,19,23,25,16,20,24,26)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7,25,14)( 2, 8,26,13)( 3, 5,28,15)( 4, 6,27,16)( 9,29,17,23)(10,30,18,24) (11,32,19,21)(12,31,20,22)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,13, 6,14)( 7,15, 8,16)(17,26,18,25)(19,28,20,27) (21,30,22,29)(23,32,24,31)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,30, 6,29)( 7,31, 8,32)(13,21,14,22)(15,24,16,23) (17,27,18,28)(19,26,20,25)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,13,25, 8)( 2,14,26, 7)( 3,16,28, 6)( 4,15,27, 5)( 9,24,17,30)(10,23,18,29) (11,22,19,31)(12,21,20,32)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,15,12,23, 2,16,11,24)( 3,13,10,22, 4,14, 9,21)( 5,20,29,26, 6,19,30,25) ( 7,17,32,28, 8,18,31,27)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,16,12,24, 2,15,11,23)( 3,14,10,21, 4,13, 9,22)( 5,19,29,25, 6,20,30,26) ( 7,18,32,27, 8,17,31,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,19, 2,20)( 3,17, 4,18)( 5,24, 6,23)( 7,22, 8,21)( 9,27,10,28)(11,26,12,25) (13,32,14,31)(15,30,16,29)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,25)( 2,26)( 3,28)( 4,27)( 5,15)( 6,16)( 7,14)( 8,13)( 9,17)(10,18)(11,19) (12,20)(21,32)(22,31)(23,29)(24,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,26)( 2,25)( 3,27)( 4,28)( 5,16)( 6,15)( 7,13)( 8,14)( 9,18)(10,17)(11,20) (12,19)(21,31)(22,32)(23,30)(24,29)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 10] |
| Character table: |
2 5 5 3 4 4 3 3 4 3 4 4 4 5 5
1a 2a 4a 8a 8b 4b 4c 4d 4e 8c 8d 4f 2b 2c
2P 1a 1a 2a 4d 4d 2b 2a 2a 2b 4d 4d 2a 1a 1a
3P 1a 2a 4a 8c 8d 4e 4c 4d 4b 8a 8b 4f 2b 2c
5P 1a 2a 4a 8b 8a 4b 4c 4d 4e 8d 8c 4f 2b 2c
7P 1a 2a 4a 8d 8c 4e 4c 4d 4b 8b 8a 4f 2b 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 1
X.3 1 1 -1 1 1 -1 -1 1 -1 1 1 1 1 1
X.4 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 1
X.5 1 1 -1 A A -A 1 -1 A -A -A 1 -1 -1
X.6 1 1 -1 -A -A A 1 -1 -A A A 1 -1 -1
X.7 1 1 1 A A A -1 -1 -A -A -A 1 -1 -1
X.8 1 1 1 -A -A -A -1 -1 A A A 1 -1 -1
X.9 2 2 . . . . . 2 . . . -2 -2 -2
X.10 2 2 . . . . . -2 . . . -2 2 2
X.11 2 -2 . B -B . . . . B -B . 2 -2
X.12 2 -2 . -B B . . . . -B B . 2 -2
X.13 2 -2 . C -C . . . . -C C . -2 2
X.14 2 -2 . -C C . . . . C -C . -2 2
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
C = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|