Show commands: Magma
Group invariants
| Abstract group: | $Q_8:C_4$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $50$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $32$ |
| |
| Generators: | $(1,10,2,9)(3,11,4,12)(5,14,6,13)(7,16,8,15)(17,25,18,26)(19,27,20,28)(21,29,22,30)(23,31,24,32)$, $(1,23,11,15,2,24,12,16)(3,22,9,13,4,21,10,14)(5,26,30,20,6,25,29,19)(7,28,31,17,8,27,32,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $QD_{16}$, $C_2^2:C_4$, $Q_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $QD_{16}$, $C_2^2:C_4$ x 2
Degree 16: $C_2^2 : C_4$, $QD_{16}$, $Q_{16}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,26)( 2,25)( 3,27)( 4,28)( 5,16)( 6,15)( 7,13)( 8,14)( 9,18)(10,17)(11,20)(12,19)(21,31)(22,32)(23,30)(24,29)$ |
| 2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,25)( 2,26)( 3,28)( 4,27)( 5,15)( 6,16)( 7,14)( 8,13)( 9,17)(10,18)(11,19)(12,20)(21,32)(22,31)(23,29)(24,30)$ |
| 4A | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,19, 2,20)( 3,17, 4,18)( 5,24, 6,23)( 7,22, 8,21)( 9,27,10,28)(11,26,12,25)(13,32,14,31)(15,30,16,29)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,30, 6,29)( 7,31, 8,32)(13,21,14,22)(15,24,16,23)(17,27,18,28)(19,26,20,25)$ |
| 4C | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,10, 2, 9)( 3,11, 4,12)( 5,14, 6,13)( 7,16, 8,15)(17,25,18,26)(19,27,20,28)(21,29,22,30)(23,31,24,32)$ |
| 4D | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 3, 2, 4)( 5,22, 6,21)( 7,23, 8,24)( 9,11,10,12)(13,30,14,29)(15,31,16,32)(17,19,18,20)(25,28,26,27)$ |
| 4E1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,14,25, 7)( 2,13,26, 8)( 3,15,28, 5)( 4,16,27, 6)( 9,23,17,29)(10,24,18,30)(11,21,19,32)(12,22,20,31)$ |
| 4E-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,22,25,31)( 2,21,26,32)( 3,24,28,30)( 4,23,27,29)( 5, 9,15,17)( 6,10,16,18)( 7,11,14,19)( 8,12,13,20)$ |
| 8A1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,23,11,15, 2,24,12,16)( 3,22, 9,13, 4,21,10,14)( 5,26,30,20, 6,25,29,19)( 7,28,31,17, 8,27,32,18)$ |
| 8A-1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,16,12,24, 2,15,11,23)( 3,14,10,21, 4,13, 9,22)( 5,19,29,25, 6,20,30,26)( 7,18,32,27, 8,17,31,28)$ |
| 8A3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,15,12,23, 2,16,11,24)( 3,13,10,22, 4,14, 9,21)( 5,20,29,26, 6,19,30,25)( 7,17,32,28, 8,18,31,27)$ |
| 8A-3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,24,11,16, 2,23,12,15)( 3,21, 9,14, 4,22,10,13)( 5,25,30,19, 6,26,29,20)( 7,27,31,18, 8,28,32,17)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | ||
| Size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2C | 2C | 4B | 4B | 4B | 4B | |
| Type | |||||||||||||||
| 32.10.1a | R | ||||||||||||||
| 32.10.1b | R | ||||||||||||||
| 32.10.1c | R | ||||||||||||||
| 32.10.1d | R | ||||||||||||||
| 32.10.1e1 | C | ||||||||||||||
| 32.10.1e2 | C | ||||||||||||||
| 32.10.1f1 | C | ||||||||||||||
| 32.10.1f2 | C | ||||||||||||||
| 32.10.2a | R | ||||||||||||||
| 32.10.2b | R | ||||||||||||||
| 32.10.2c1 | C | ||||||||||||||
| 32.10.2c2 | C | ||||||||||||||
| 32.10.2d1 | S | ||||||||||||||
| 32.10.2d2 | S |
Regular extensions
Data not computed