Properties

Label 32T50
32T50 1 10 1->10 23 1->23 2 9 2->9 24 2->24 3 11 3->11 22 3->22 4 12 4->12 21 4->21 5 14 5->14 26 5->26 6 13 6->13 25 6->25 7 16 7->16 28 7->28 8 15 8->15 27 8->27 9->1 9->13 10->2 10->14 11->4 11->15 12->3 12->16 13->4 13->5 14->3 14->6 15->2 15->7 16->1 16->8 17 17->8 17->25 18 18->7 18->26 19 19->5 19->27 20 20->6 20->28 21->10 29 21->29 22->9 30 22->30 23->11 31 23->31 24->12 32 24->32 25->18 25->29 26->17 26->30 27->20 27->32 28->19 28->31 29->19 29->22 30->20 30->21 31->17 31->24 32->18 32->23
Degree $32$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $Q_8:C_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(32, 50);
 

Group invariants

Abstract group:  $Q_8:C_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $32=2^{5}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $3$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $32$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $50$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $32$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,10,2,9)(3,11,4,12)(5,14,6,13)(7,16,8,15)(17,25,18,26)(19,27,20,28)(21,29,22,30)(23,31,24,32)$, $(1,23,11,15,2,24,12,16)(3,22,9,13,4,21,10,14)(5,26,30,20,6,25,29,19)(7,28,31,17,8,27,32,18)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $D_{4}$ x 2, $C_4\times C_2$
$16$:  $QD_{16}$, $C_2^2:C_4$, $Q_{16}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4

Degree 8: $C_4\times C_2$, $D_4$ x 2, $QD_{16}$, $C_2^2:C_4$ x 2

Degree 16: $C_2^2 : C_4$, $QD_{16}$, $Q_{16}$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{32}$ $1$ $1$ $0$ $()$
2A $2^{16}$ $1$ $2$ $16$ $( 1,26)( 2,25)( 3,27)( 4,28)( 5,16)( 6,15)( 7,13)( 8,14)( 9,18)(10,17)(11,20)(12,19)(21,31)(22,32)(23,30)(24,29)$
2B $2^{16}$ $1$ $2$ $16$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$
2C $2^{16}$ $1$ $2$ $16$ $( 1,25)( 2,26)( 3,28)( 4,27)( 5,15)( 6,16)( 7,14)( 8,13)( 9,17)(10,18)(11,19)(12,20)(21,32)(22,31)(23,29)(24,30)$
4A $4^{8}$ $2$ $4$ $24$ $( 1,19, 2,20)( 3,17, 4,18)( 5,24, 6,23)( 7,22, 8,21)( 9,27,10,28)(11,26,12,25)(13,32,14,31)(15,30,16,29)$
4B $4^{8}$ $2$ $4$ $24$ $( 1,11, 2,12)( 3, 9, 4,10)( 5,30, 6,29)( 7,31, 8,32)(13,21,14,22)(15,24,16,23)(17,27,18,28)(19,26,20,25)$
4C $4^{8}$ $4$ $4$ $24$ $( 1,10, 2, 9)( 3,11, 4,12)( 5,14, 6,13)( 7,16, 8,15)(17,25,18,26)(19,27,20,28)(21,29,22,30)(23,31,24,32)$
4D $4^{8}$ $4$ $4$ $24$ $( 1, 3, 2, 4)( 5,22, 6,21)( 7,23, 8,24)( 9,11,10,12)(13,30,14,29)(15,31,16,32)(17,19,18,20)(25,28,26,27)$
4E1 $4^{8}$ $4$ $4$ $24$ $( 1,14,25, 7)( 2,13,26, 8)( 3,15,28, 5)( 4,16,27, 6)( 9,23,17,29)(10,24,18,30)(11,21,19,32)(12,22,20,31)$
4E-1 $4^{8}$ $4$ $4$ $24$ $( 1,22,25,31)( 2,21,26,32)( 3,24,28,30)( 4,23,27,29)( 5, 9,15,17)( 6,10,16,18)( 7,11,14,19)( 8,12,13,20)$
8A1 $8^{4}$ $2$ $8$ $28$ $( 1,23,11,15, 2,24,12,16)( 3,22, 9,13, 4,21,10,14)( 5,26,30,20, 6,25,29,19)( 7,28,31,17, 8,27,32,18)$
8A-1 $8^{4}$ $2$ $8$ $28$ $( 1,16,12,24, 2,15,11,23)( 3,14,10,21, 4,13, 9,22)( 5,19,29,25, 6,20,30,26)( 7,18,32,27, 8,17,31,28)$
8A3 $8^{4}$ $2$ $8$ $28$ $( 1,15,12,23, 2,16,11,24)( 3,13,10,22, 4,14, 9,21)( 5,20,29,26, 6,19,30,25)( 7,17,32,28, 8,18,31,27)$
8A-3 $8^{4}$ $2$ $8$ $28$ $( 1,24,11,16, 2,23,12,15)( 3,21, 9,14, 4,22,10,13)( 5,25,30,19, 6,26,29,20)( 7,27,31,18, 8,28,32,17)$

Malle's constant $a(G)$:     $1/16$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 4A 4B 4C 4D 4E1 4E-1 8A1 8A-1 8A3 8A-3
Size 1 1 1 1 2 2 4 4 4 4 2 2 2 2
2 P 1A 1A 1A 1A 2B 2B 2B 2B 2C 2C 4B 4B 4B 4B
Type
32.10.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.10.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.10.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.10.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.10.1e1 C 1 1 1 1 1 1 i 1 i 1 i i i i
32.10.1e2 C 1 1 1 1 1 1 i 1 i 1 i i i i
32.10.1f1 C 1 1 1 1 1 1 i 1 i 1 i i i i
32.10.1f2 C 1 1 1 1 1 1 i 1 i 1 i i i i
32.10.2a R 2 2 2 2 2 2 0 0 0 0 0 0 0 0
32.10.2b R 2 2 2 2 2 2 0 0 0 0 0 0 0 0
32.10.2c1 C 2 2 2 2 0 0 0 0 0 0 ζ8ζ83 ζ8+ζ83 ζ8+ζ83 ζ8ζ83
32.10.2c2 C 2 2 2 2 0 0 0 0 0 0 ζ8+ζ83 ζ8ζ83 ζ8ζ83 ζ8+ζ83
32.10.2d1 S 2 2 2 2 0 0 0 0 0 0 ζ81ζ8 ζ81+ζ8 ζ81ζ8 ζ81+ζ8
32.10.2d2 S 2 2 2 2 0 0 0 0 0 0 ζ81+ζ8 ζ81ζ8 ζ81+ζ8 ζ81ζ8

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed