Show commands: Magma
Group invariants
| Abstract group: | $C_4:C_8$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $2$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $44$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $32$ |
| |
| Generators: | $(1,5,9,13,17,23,25,29)(2,6,10,14,18,24,26,30)(3,8,11,16,19,22,27,32)(4,7,12,15,20,21,28,31)$, $(1,22,9,32,17,8,25,16)(2,21,10,31,18,7,26,15)(3,24,11,30,19,6,27,14)(4,23,12,29,20,5,28,13)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$, $C_8$ x 2, $C_4\times C_2$, $Q_8$ $16$: $C_8:C_2$, $C_8\times C_2$, $C_4:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 2
Degree 8: $C_8$ x 2, $C_4\times C_2$, $D_4$, $Q_8$, $C_8:C_2$
Degree 16: $C_8\times C_2$, $C_8: C_2$, $C_4:C_4$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,19)( 4,20)( 5,23)( 6,24)( 7,21)( 8,22)( 9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)$ |
| 2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5,24)( 6,23)( 7,22)( 8,21)( 9,26)(10,25)(11,28)(12,27)(13,30)(14,29)(15,32)(16,31)$ |
| 4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,10,17,26)( 2, 9,18,25)( 3,12,19,28)( 4,11,20,27)( 5,14,23,30)( 6,13,24,29)( 7,16,21,32)( 8,15,22,31)$ |
| 4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,26,17,10)( 2,25,18, 9)( 3,28,19,12)( 4,27,20,11)( 5,30,23,14)( 6,29,24,13)( 7,32,21,16)( 8,31,22,15)$ |
| 4B1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 9,17,25)( 2,10,18,26)( 3,11,19,27)( 4,12,20,28)( 5,13,23,29)( 6,14,24,30)( 7,15,21,31)( 8,16,22,32)$ |
| 4B-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,25,17, 9)( 2,26,18,10)( 3,27,19,11)( 4,28,20,12)( 5,29,23,13)( 6,30,24,14)( 7,31,21,15)( 8,32,22,16)$ |
| 4C | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,19, 2,20)( 3,18, 4,17)( 5,21, 6,22)( 7,24, 8,23)( 9,27,10,28)(11,26,12,25)(13,31,14,32)(15,30,16,29)$ |
| 4D | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,19,18,20)(21,24,22,23)(25,27,26,28)(29,31,30,32)$ |
| 4E1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,27,18,12)( 2,28,17,11)( 3,26,20, 9)( 4,25,19,10)( 5,31,24,16)( 6,32,23,15)( 7,30,22,13)( 8,29,21,14)$ |
| 4E-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,11,18,28)( 2,12,17,27)( 3,10,20,25)( 4, 9,19,26)( 5,15,24,32)( 6,16,23,31)( 7,14,22,29)( 8,13,21,30)$ |
| 8A1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1, 5, 9,13,17,23,25,29)( 2, 6,10,14,18,24,26,30)( 3, 8,11,16,19,22,27,32)( 4, 7,12,15,20,21,28,31)$ |
| 8A-1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,29,25,23,17,13, 9, 5)( 2,30,26,24,18,14,10, 6)( 3,32,27,22,19,16,11, 8)( 4,31,28,21,20,15,12, 7)$ |
| 8A3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,13,25, 5,17,29, 9,23)( 2,14,26, 6,18,30,10,24)( 3,16,27, 8,19,32,11,22)( 4,15,28, 7,20,31,12,21)$ |
| 8A-3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,23, 9,29,17, 5,25,13)( 2,24,10,30,18, 6,26,14)( 3,22,11,32,19, 8,27,16)( 4,21,12,31,20, 7,28,15)$ |
| 8B1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,21, 9,31,17, 7,25,15)( 2,22,10,32,18, 8,26,16)( 3,23,11,29,19, 5,27,13)( 4,24,12,30,20, 6,28,14)$ |
| 8B-1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,15,25, 7,17,31, 9,21)( 2,16,26, 8,18,32,10,22)( 3,13,27, 5,19,29,11,23)( 4,14,28, 6,20,30,12,24)$ |
| 8B3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,31,25,21,17,15, 9, 7)( 2,32,26,22,18,16,10, 8)( 3,29,27,23,19,13,11, 5)( 4,30,28,24,20,14,12, 6)$ |
| 8B-3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1, 7, 9,15,17,21,25,31)( 2, 8,10,16,18,22,26,32)( 3, 5,11,13,19,23,27,29)( 4, 6,12,14,20,24,28,30)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 4C | 4D | 4E1 | 4E-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | 8B1 | 8B-1 | 8B3 | 8B-3 | ||
| Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2B | 2B | 2C | 2C | 4B1 | 4B-1 | 4B-1 | 4B1 | 4B1 | 4B-1 | 4B-1 | 4B1 | |
| Type | |||||||||||||||||||||
| 32.12.1a | R | ||||||||||||||||||||
| 32.12.1b | R | ||||||||||||||||||||
| 32.12.1c | R | ||||||||||||||||||||
| 32.12.1d | R | ||||||||||||||||||||
| 32.12.1e1 | C | ||||||||||||||||||||
| 32.12.1e2 | C | ||||||||||||||||||||
| 32.12.1f1 | C | ||||||||||||||||||||
| 32.12.1f2 | C | ||||||||||||||||||||
| 32.12.1g1 | C | ||||||||||||||||||||
| 32.12.1g2 | C | ||||||||||||||||||||
| 32.12.1g3 | C | ||||||||||||||||||||
| 32.12.1g4 | C | ||||||||||||||||||||
| 32.12.1h1 | C | ||||||||||||||||||||
| 32.12.1h2 | C | ||||||||||||||||||||
| 32.12.1h3 | C | ||||||||||||||||||||
| 32.12.1h4 | C | ||||||||||||||||||||
| 32.12.2a | R | ||||||||||||||||||||
| 32.12.2b | S | ||||||||||||||||||||
| 32.12.2c1 | C | ||||||||||||||||||||
| 32.12.2c2 | C |
Regular extensions
Data not computed