Show commands: Magma
Group invariants
| Abstract group: | $C_2^2\times Q_8$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $2$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $40$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $32$ |
| |
| Generators: | $(1,24,2,23)(3,22,4,21)(5,17,6,18)(7,19,8,20)(9,15,10,16)(11,13,12,14)(25,29,26,30)(27,31,28,32)$, $(1,7,2,8)(3,5,4,6)(9,32,10,31)(11,30,12,29)(13,26,14,25)(15,28,16,27)(17,22,18,21)(19,24,20,23)$, $(1,6,2,5)(3,8,4,7)(9,29,10,30)(11,31,12,32)(13,27,14,28)(15,25,16,26)(17,23,18,24)(19,21,20,22)$, $(1,12,2,11)(3,10,4,9)(5,31,6,32)(7,29,8,30)(13,23,14,24)(15,21,16,22)(17,27,18,28)(19,25,20,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $C_2^3$ x 15, $Q_8$ x 4 $16$: $C_2^4$, $Q_8\times C_2$ x 6 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 15
Degree 4: $C_2^2$ x 35
Degree 8: $C_2^3$ x 15, $Q_8$ x 4
Degree 16: $C_2^4$, $Q_8\times C_2$ x 6
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,32)( 2,31)( 3,30)( 4,29)( 5,12)( 6,11)( 7,10)( 8, 9)(13,18)(14,17)(15,20)(16,19)(21,26)(22,25)(23,28)(24,27)$ |
| 2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$ |
| 2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,31)( 2,32)( 3,29)( 4,30)( 5,11)( 6,12)( 7, 9)( 8,10)(13,17)(14,18)(15,19)(16,20)(21,25)(22,26)(23,27)(24,28)$ |
| 2D | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
| 2E | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,29)( 2,30)( 3,31)( 4,32)( 5, 9)( 6,10)( 7,11)( 8,12)(13,19)(14,20)(15,17)(16,18)(21,27)(22,28)(23,25)(24,26)$ |
| 2F | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,30)( 2,29)( 3,32)( 4,31)( 5,10)( 6, 9)( 7,12)( 8,11)(13,20)(14,19)(15,18)(16,17)(21,28)(22,27)(23,26)(24,25)$ |
| 2G | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 4A | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,24, 2,23)( 3,22, 4,21)( 5,17, 6,18)( 7,19, 8,20)( 9,15,10,16)(11,13,12,14)(25,29,26,30)(27,31,28,32)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,32, 6,31)( 7,30, 8,29)(13,24,14,23)(15,22,16,21)(17,28,18,27)(19,26,20,25)$ |
| 4C | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,27, 6,28)( 7,25, 8,26)( 9,21,10,22)(11,23,12,24)(17,32,18,31)(19,30,20,29)$ |
| 4D | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,27, 2,28)( 3,25, 4,26)( 5,14, 6,13)( 7,16, 8,15)( 9,20,10,19)(11,18,12,17)(21,30,22,29)(23,32,24,31)$ |
| 4E | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,29,10,30)(11,31,12,32)(13,27,14,28)(15,25,16,26)(17,23,18,24)(19,21,20,22)$ |
| 4F | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,21, 2,22)( 3,23, 4,24)( 5,20, 6,19)( 7,18, 8,17)( 9,14,10,13)(11,16,12,15)(25,32,26,31)(27,30,28,29)$ |
| 4G | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,29, 6,30)( 7,31, 8,32)(13,21,14,22)(15,23,16,24)(17,25,18,26)(19,27,20,28)$ |
| 4H | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,18, 2,17)( 3,20, 4,19)( 5,24, 6,23)( 7,22, 8,21)( 9,26,10,25)(11,28,12,27)(13,31,14,32)(15,29,16,30)$ |
| 4I | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,16, 2,15)( 3,14, 4,13)( 5,26, 6,25)( 7,28, 8,27)( 9,24,10,23)(11,22,12,21)(17,29,18,30)(19,31,20,32)$ |
| 4J | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,26, 2,25)( 3,28, 4,27)( 5,15, 6,16)( 7,13, 8,14)( 9,17,10,18)(11,19,12,20)(21,31,22,32)(23,29,24,30)$ |
| 4K | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,32,10,31)(11,30,12,29)(13,26,14,25)(15,28,16,27)(17,22,18,21)(19,24,20,23)$ |
| 4L | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,19, 2,20)( 3,17, 4,18)( 5,21, 6,22)( 7,23, 8,24)( 9,27,10,28)(11,25,12,26)(13,30,14,29)(15,32,16,31)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | ||
| Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2G | 2G | 2G | 2G | 2G | 2G | 2G | 2G | 2G | 2G | 2G | 2G | |
| Type | |||||||||||||||||||||
| 32.47.1a | R | ||||||||||||||||||||
| 32.47.1b | R | ||||||||||||||||||||
| 32.47.1c | R | ||||||||||||||||||||
| 32.47.1d | R | ||||||||||||||||||||
| 32.47.1e | R | ||||||||||||||||||||
| 32.47.1f | R | ||||||||||||||||||||
| 32.47.1g | R | ||||||||||||||||||||
| 32.47.1h | R | ||||||||||||||||||||
| 32.47.1i | R | ||||||||||||||||||||
| 32.47.1j | R | ||||||||||||||||||||
| 32.47.1k | R | ||||||||||||||||||||
| 32.47.1l | R | ||||||||||||||||||||
| 32.47.1m | R | ||||||||||||||||||||
| 32.47.1n | R | ||||||||||||||||||||
| 32.47.1o | R | ||||||||||||||||||||
| 32.47.1p | R | ||||||||||||||||||||
| 32.47.2a | S | ||||||||||||||||||||
| 32.47.2b | S | ||||||||||||||||||||
| 32.47.2c | S | ||||||||||||||||||||
| 32.47.2d | S |
Regular extensions
Data not computed