Show commands: Magma
Group invariants
| Abstract group: | $D_{16}$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $4$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $31$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $32$ |
| |
| Generators: | $(1,6)(2,5)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,26)(14,25)(15,28)(16,27)(17,22)(18,21)(19,23)(20,24)$, $(1,11)(2,12)(3,10)(4,9)(5,7)(6,8)(13,30)(14,29)(15,32)(16,31)(17,25)(18,26)(19,28)(20,27)(21,22)(23,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $16$: $D_{8}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
16T56 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$ |
| 2B | $2^{16}$ | $8$ | $2$ | $16$ | $( 1,25)( 2,26)( 3,28)( 4,27)( 5,23)( 6,24)( 7,21)( 8,22)( 9,18)(10,17)(11,19)(12,20)(13,14)(15,16)(29,31)(30,32)$ |
| 2C | $2^{16}$ | $8$ | $2$ | $16$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,32)(10,31)(11,30)(12,29)(13,27)(14,28)(15,25)(16,26)(17,23)(18,24)(19,22)(20,21)$ |
| 4A | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,19, 3,17)( 2,20, 4,18)( 5,21, 8,24)( 6,22, 7,23)( 9,27,12,26)(10,28,11,25)(13,32,16,29)(14,31,15,30)$ |
| 8A1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,27,19,12, 3,26,17, 9)( 2,28,20,11, 4,25,18,10)( 5,30,21,14, 8,31,24,15)( 6,29,22,13, 7,32,23,16)$ |
| 8A3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,12,17,27, 3, 9,19,26)( 2,11,18,28, 4,10,20,25)( 5,14,24,30, 8,15,21,31)( 6,13,23,29, 7,16,22,32)$ |
| 16A1 | $16^{2}$ | $2$ | $16$ | $30$ | $( 1,31,27,24,19,15,12, 5, 3,30,26,21,17,14, 9, 8)( 2,32,28,23,20,16,11, 6, 4,29,25,22,18,13,10, 7)$ |
| 16A3 | $16^{2}$ | $2$ | $16$ | $30$ | $( 1,24,12,30,17, 8,27,15, 3,21, 9,31,19, 5,26,14)( 2,23,11,29,18, 7,28,16, 4,22,10,32,20, 6,25,13)$ |
| 16A5 | $16^{2}$ | $2$ | $16$ | $30$ | $( 1,15,26, 8,19,30, 9,24, 3,14,27, 5,17,31,12,21)( 2,16,25, 7,20,29,10,23, 4,13,28, 6,18,32,11,22)$ |
| 16A7 | $16^{2}$ | $2$ | $16$ | $30$ | $( 1,30,27,21,19,14,12, 8, 3,31,26,24,17,15, 9, 5)( 2,29,28,22,20,13,11, 7, 4,32,25,23,18,16,10, 6)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 4A | 8A1 | 8A3 | 16A1 | 16A3 | 16A5 | 16A7 | ||
| Size | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 2A | 4A | 4A | 8A1 | 8A3 | 8A3 | 8A1 | |
| Type | ||||||||||||
| 32.18.1a | R | |||||||||||
| 32.18.1b | R | |||||||||||
| 32.18.1c | R | |||||||||||
| 32.18.1d | R | |||||||||||
| 32.18.2a | R | |||||||||||
| 32.18.2b1 | R | |||||||||||
| 32.18.2b2 | R | |||||||||||
| 32.18.2c1 | R | |||||||||||
| 32.18.2c2 | R | |||||||||||
| 32.18.2c3 | R | |||||||||||
| 32.18.2c4 | R |
Regular extensions
Data not computed