Group action invariants
| Degree $n$ : | $32$ | |
| Transitive number $t$ : | $31$ | |
| Group : | $D_{16}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,6)(2,5)(3,7)(4,8)(9,29)(10,30)(11,31)(12,32)(13,26)(14,25)(15,28)(16,27)(17,22)(18,21)(19,23)(20,24), (1,11)(2,12)(3,10)(4,9)(5,7)(6,8)(13,30)(14,29)(15,32)(16,31)(17,25)(18,26)(19,28)(20,27)(21,22)(23,24) | |
| $|\Aut(F/K)|$: | $32$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 16: $D_{8}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
16T56 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5,29)( 6,30)( 7,31)( 8,32)( 9,28)(10,27)(11,26)(12,25)(13,24) (14,23)(15,22)(16,21)(17,20)(18,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,24) (22,23)(25,28)(26,27)(29,32)(30,31)$ |
| $ 16, 16 $ | $2$ | $16$ | $( 1, 5, 9,15,17,24,26,31, 3, 8,12,14,19,21,27,30)( 2, 6,10,16,18,23,25,32, 4, 7,11,13,20,22,28,29)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,29)(10,30)(11,31)(12,32)(13,26)(14,25)(15,28) (16,27)(17,22)(18,21)(19,23)(20,24)$ |
| $ 16, 16 $ | $2$ | $16$ | $( 1, 8, 9,14,17,21,26,30, 3, 5,12,15,19,24,27,31)( 2, 7,10,13,18,22,25,29, 4, 6,11,16,20,23,28,32)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 9,17,26, 3,12,19,27)( 2,10,18,25, 4,11,20,28)( 5,15,24,31, 8,14,21,30) ( 6,16,23,32, 7,13,22,29)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,12,17,27, 3, 9,19,26)( 2,11,18,28, 4,10,20,25)( 5,14,24,30, 8,15,21,31) ( 6,13,23,29, 7,16,22,32)$ |
| $ 16, 16 $ | $2$ | $16$ | $( 1,14,26, 5,19,31, 9,21, 3,15,27, 8,17,30,12,24)( 2,13,25, 6,20,32,10,22, 4, 16,28, 7,18,29,11,23)$ |
| $ 16, 16 $ | $2$ | $16$ | $( 1,15,26, 8,19,30, 9,24, 3,14,27, 5,17,31,12,21)( 2,16,25, 7,20,29,10,23, 4, 13,28, 6,18,32,11,22)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,17, 3,19)( 2,18, 4,20)( 5,24, 8,21)( 6,23, 7,22)( 9,26,12,27)(10,25,11,28) (13,29,16,32)(14,30,15,31)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 18] |
| Character table: |
2 5 2 5 4 2 4 4 4 4 4 4
1a 2a 2b 16a 2c 16b 8a 8b 16c 16d 4a
2P 1a 1a 1a 8a 1a 8a 4a 4a 8b 8b 2b
3P 1a 2a 2b 16d 2c 16c 8b 8a 16a 16b 4a
5P 1a 2a 2b 16c 2c 16d 8b 8a 16b 16a 4a
7P 1a 2a 2b 16b 2c 16a 8a 8b 16d 16c 4a
11P 1a 2a 2b 16c 2c 16d 8b 8a 16b 16a 4a
13P 1a 2a 2b 16d 2c 16c 8b 8a 16a 16b 4a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 1 -1 -1 1
X.3 1 -1 1 1 -1 1 1 1 1 1 1
X.4 1 1 1 -1 -1 -1 1 1 -1 -1 1
X.5 2 . 2 . . . -2 -2 . . 2
X.6 2 . 2 A . A . . -A -A -2
X.7 2 . 2 -A . -A . . A A -2
X.8 2 . -2 B . -B -A A -C C .
X.9 2 . -2 C . -C A -A B -B .
X.10 2 . -2 -C . C A -A -B B .
X.11 2 . -2 -B . B -A A C -C .
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
B = -E(16)+E(16)^7
C = -E(16)^3+E(16)^5
|