Show commands: Magma
Group invariants
| Abstract group: | $D_8:C_2$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $26$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $32$ |
| |
| Generators: | $(1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,19)(14,20)(15,18)(16,17)(21,26)(22,25)(23,27)(24,28)(29,32)(30,31)$, $(1,27,29,24,4,26,31,22)(2,28,30,23,3,25,32,21)(5,14,10,19,7,16,11,18)(6,13,9,20,8,15,12,17)$, $(1,16)(2,15)(3,13)(4,14)(5,27)(6,28)(7,26)(8,25)(9,21)(10,22)(11,24)(12,23)(17,32)(18,31)(19,29)(20,30)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7, $D_{4}$ x 4
Degree 8: $C_2^3$, $D_4$ x 2, $D_4\times C_2$ x 4
Degree 16: $D_4\times C_2$, 16T44 x 2, 16T47
Low degree siblings
16T44 x 2, 16T47Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)(21,23)(22,24)(25,28)(26,27)(29,31)(30,32)$ |
| 2B | $2^{16}$ | $2$ | $2$ | $16$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,30)( 6,29)( 7,32)( 8,31)(13,24)(14,23)(15,22)(16,21)(17,27)(18,28)(19,25)(20,26)$ |
| 2C | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11)(10,12)(13,19)(14,20)(15,18)(16,17)(21,26)(22,25)(23,27)(24,28)(29,32)(30,31)$ |
| 2D | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5,24)( 6,23)( 7,22)( 8,21)( 9,28)(10,27)(11,26)(12,25)(13,32)(14,31)(15,30)(16,29)$ |
| 4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,29,12,31)(10,30,11,32)(13,27,15,26)(14,28,16,25)(17,22,20,24)(18,21,19,23)$ |
| 4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,31,12,29)(10,32,11,30)(13,26,15,27)(14,25,16,28)(17,24,20,22)(18,23,19,21)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,31, 4,29)( 2,32, 3,30)( 5,11, 7,10)( 6,12, 8, 9)(13,17,15,20)(14,18,16,19)(21,25,23,28)(22,26,24,27)$ |
| 4C | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,10, 4,11)( 2, 9, 3,12)( 5,31, 7,29)( 6,32, 8,30)(13,28,15,25)(14,27,16,26)(17,23,20,21)(18,24,19,22)$ |
| 4D | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,25, 4,28)( 2,26, 3,27)( 5,15, 7,13)( 6,16, 8,14)( 9,19,12,18)(10,20,11,17)(21,29,23,31)(22,30,24,32)$ |
| 8A1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,22,31,26, 4,24,29,27)( 2,21,32,25, 3,23,30,28)( 5,18,11,16, 7,19,10,14)( 6,17,12,15, 8,20, 9,13)$ |
| 8A-1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,27,29,24, 4,26,31,22)( 2,28,30,23, 3,25,32,21)( 5,14,10,19, 7,16,11,18)( 6,13, 9,20, 8,15,12,17)$ |
| 8B1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,15,31,20, 4,13,29,17)( 2,16,32,19, 3,14,30,18)( 5,28,11,21, 7,25,10,23)( 6,27,12,22, 8,26, 9,24)$ |
| 8B3 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,20,29,15, 4,17,31,13)( 2,19,30,16, 3,18,32,14)( 5,21,10,28, 7,23,11,25)( 6,22, 9,27, 8,24,12,26)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 2D | 4A1 | 4A-1 | 4B | 4C | 4D | 8A1 | 8A-1 | 8B1 | 8B3 | ||
| Size | 1 | 1 | 2 | 4 | 4 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 4B | 4B | 4B | 4B | |
| Type | |||||||||||||||
| 32.42.1a | R | ||||||||||||||
| 32.42.1b | R | ||||||||||||||
| 32.42.1c | R | ||||||||||||||
| 32.42.1d | R | ||||||||||||||
| 32.42.1e | R | ||||||||||||||
| 32.42.1f | R | ||||||||||||||
| 32.42.1g | R | ||||||||||||||
| 32.42.1h | R | ||||||||||||||
| 32.42.2a | R | ||||||||||||||
| 32.42.2b | R | ||||||||||||||
| 32.42.2c1 | C | ||||||||||||||
| 32.42.2c2 | C | ||||||||||||||
| 32.42.2c3 | C | ||||||||||||||
| 32.42.2c4 | C |
Regular extensions
Data not computed