Properties

Label 32T26
32T26 1 2 1->2 16 1->16 27 1->27 15 2->15 28 2->28 3 4 3->4 13 3->13 25 3->25 14 4->14 26 4->26 5 6 5->6 5->14 5->27 6->13 6->28 7 8 7->8 7->16 7->26 8->15 8->25 9 11 9->11 20 9->20 21 9->21 10 12 10->12 19 10->19 22 10->22 18 11->18 24 11->24 17 12->17 23 12->23 13->9 13->19 14->10 14->20 15->12 15->18 16->11 16->17 17->6 32 17->32 18->5 31 18->31 19->7 29 19->29 20->8 30 20->30 21->2 21->26 22->1 22->25 23->3 23->27 24->4 24->28 25->32 26->31 27->29 28->30 29->24 29->32 30->23 30->31 31->22 32->21
Degree $32$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $D_8:C_2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(32, 26);
 

Group invariants

Abstract group:  $D_8:C_2$
Copy content magma:IdentifyGroup(G);
 
Order:  $32=2^{5}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $3$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $32$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $26$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $32$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,19)(14,20)(15,18)(16,17)(21,26)(22,25)(23,27)(24,28)(29,32)(30,31)$, $(1,27,29,24,4,26,31,22)(2,28,30,23,3,25,32,21)(5,14,10,19,7,16,11,18)(6,13,9,20,8,15,12,17)$, $(1,16)(2,15)(3,13)(4,14)(5,27)(6,28)(7,26)(8,25)(9,21)(10,22)(11,24)(12,23)(17,32)(18,31)(19,29)(20,30)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$8$:  $D_{4}$ x 2, $C_2^3$
$16$:  $D_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 7

Degree 4: $C_2^2$ x 7, $D_{4}$ x 4

Degree 8: $C_2^3$, $D_4$ x 2, $D_4\times C_2$ x 4

Degree 16: $D_4\times C_2$, 16T44 x 2, 16T47

Low degree siblings

16T44 x 2, 16T47

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{32}$ $1$ $1$ $0$ $()$
2A $2^{16}$ $1$ $2$ $16$ $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)(21,23)(22,24)(25,28)(26,27)(29,31)(30,32)$
2B $2^{16}$ $2$ $2$ $16$ $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,30)( 6,29)( 7,32)( 8,31)(13,24)(14,23)(15,22)(16,21)(17,27)(18,28)(19,25)(20,26)$
2C $2^{16}$ $4$ $2$ $16$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11)(10,12)(13,19)(14,20)(15,18)(16,17)(21,26)(22,25)(23,27)(24,28)(29,32)(30,31)$
2D $2^{16}$ $4$ $2$ $16$ $( 1,18)( 2,17)( 3,20)( 4,19)( 5,24)( 6,23)( 7,22)( 8,21)( 9,28)(10,27)(11,26)(12,25)(13,32)(14,31)(15,30)(16,29)$
4A1 $4^{8}$ $1$ $4$ $24$ $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,29,12,31)(10,30,11,32)(13,27,15,26)(14,28,16,25)(17,22,20,24)(18,21,19,23)$
4A-1 $4^{8}$ $1$ $4$ $24$ $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,31,12,29)(10,32,11,30)(13,26,15,27)(14,25,16,28)(17,24,20,22)(18,23,19,21)$
4B $4^{8}$ $2$ $4$ $24$ $( 1,31, 4,29)( 2,32, 3,30)( 5,11, 7,10)( 6,12, 8, 9)(13,17,15,20)(14,18,16,19)(21,25,23,28)(22,26,24,27)$
4C $4^{8}$ $4$ $4$ $24$ $( 1,10, 4,11)( 2, 9, 3,12)( 5,31, 7,29)( 6,32, 8,30)(13,28,15,25)(14,27,16,26)(17,23,20,21)(18,24,19,22)$
4D $4^{8}$ $4$ $4$ $24$ $( 1,25, 4,28)( 2,26, 3,27)( 5,15, 7,13)( 6,16, 8,14)( 9,19,12,18)(10,20,11,17)(21,29,23,31)(22,30,24,32)$
8A1 $8^{4}$ $2$ $8$ $28$ $( 1,22,31,26, 4,24,29,27)( 2,21,32,25, 3,23,30,28)( 5,18,11,16, 7,19,10,14)( 6,17,12,15, 8,20, 9,13)$
8A-1 $8^{4}$ $2$ $8$ $28$ $( 1,27,29,24, 4,26,31,22)( 2,28,30,23, 3,25,32,21)( 5,14,10,19, 7,16,11,18)( 6,13, 9,20, 8,15,12,17)$
8B1 $8^{4}$ $2$ $8$ $28$ $( 1,15,31,20, 4,13,29,17)( 2,16,32,19, 3,14,30,18)( 5,28,11,21, 7,25,10,23)( 6,27,12,22, 8,26, 9,24)$
8B3 $8^{4}$ $2$ $8$ $28$ $( 1,20,29,15, 4,17,31,13)( 2,19,30,16, 3,18,32,14)( 5,21,10,28, 7,23,11,25)( 6,22, 9,27, 8,24,12,26)$

Malle's constant $a(G)$:     $1/16$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 4A1 4A-1 4B 4C 4D 8A1 8A-1 8B1 8B3
Size 1 1 2 4 4 1 1 2 4 4 2 2 2 2
2 P 1A 1A 1A 1A 1A 2A 2A 2A 2A 2A 4B 4B 4B 4B
Type
32.42.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.42.2a R 2 2 2 0 0 2 2 2 0 0 0 0 0 0
32.42.2b R 2 2 2 0 0 2 2 2 0 0 0 0 0 0
32.42.2c1 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ8ζ83 ζ81ζ8 ζ8+ζ83 ζ81+ζ8
32.42.2c2 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ8+ζ83 ζ81ζ8 ζ8ζ83 ζ81+ζ8
32.42.2c3 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ8+ζ83 ζ81+ζ8 ζ8ζ83 ζ81ζ8
32.42.2c4 C 2 2 0 0 0 2ζ82 2ζ82 0 0 0 ζ8ζ83 ζ81+ζ8 ζ8+ζ83 ζ81ζ8

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed