Show commands: Magma
Group invariants
| Abstract group: | $C_2^2:Q_8$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $2$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $17$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $32$ |
| |
| Generators: | $(1,12,4,10)(2,11,3,9)(5,31,7,30)(6,32,8,29)(13,28,15,26)(14,27,16,25)(17,23,19,22)(18,24,20,21)$, $(1,24,4,21)(2,23,3,22)(5,17,7,19)(6,18,8,20)(9,14,11,16)(10,13,12,15)(25,31,27,30)(26,32,28,29)$, $(1,3)(2,4)(5,8)(6,7)(9,12)(10,11)(13,17)(14,18)(15,19)(16,20)(21,25)(22,26)(23,28)(24,27)(29,31)(30,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$, $Q_8$ x 2 $16$: $D_4\times C_2$, $Q_8:C_2$, $Q_8\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7, $D_{4}$ x 4
Degree 8: $C_2^3$, $D_4$ x 2, $Q_8$ x 2, $D_4\times C_2$ x 4, $Q_8:C_2$ x 3
Degree 16: $Q_8\times C_2$, $D_4\times C_2$, $Q_8 : C_2$, 16T31 x 2
Low degree siblings
16T31 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,29)( 2,30)( 3,31)( 4,32)( 5,11)( 6,12)( 7, 9)( 8,10)(13,20)(14,19)(15,18)(16,17)(21,28)(22,27)(23,25)(24,26)$ |
| 2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,24)(22,23)(25,27)(26,28)(29,32)(30,31)$ |
| 2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,32)( 2,31)( 3,30)( 4,29)( 5, 9)( 6,10)( 7,11)( 8,12)(13,18)(14,17)(15,20)(16,19)(21,26)(22,25)(23,27)(24,28)$ |
| 2D | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,19)(14,20)(15,17)(16,18)(21,27)(22,28)(23,26)(24,25)(29,30)(31,32)$ |
| 2E | $2^{16}$ | $2$ | $2$ | $16$ | $( 1,31)( 2,32)( 3,29)( 4,30)( 5,10)( 6, 9)( 7,12)( 8,11)(13,16)(14,15)(17,20)(18,19)(21,23)(22,24)(25,28)(26,27)$ |
| 4A | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 9, 4,11)( 2,10, 3,12)( 5,29, 7,32)( 6,30, 8,31)(13,23,15,22)(14,24,16,21)(17,28,19,26)(18,27,20,25)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,29,11,32)(10,30,12,31)(13,27,15,25)(14,28,16,26)(17,24,19,21)(18,23,20,22)$ |
| 4C1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,10, 4,12)( 2, 9, 3,11)( 5,30, 7,31)( 6,29, 8,32)(13,26,15,28)(14,25,16,27)(17,22,19,23)(18,21,20,24)$ |
| 4C-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,12, 4,10)( 2,11, 3, 9)( 5,31, 7,30)( 6,32, 8,29)(13,28,15,26)(14,27,16,25)(17,23,19,22)(18,24,20,21)$ |
| 4D | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,20,32,15)( 2,19,31,16)( 3,17,30,14)( 4,18,29,13)( 5,23, 9,27)( 6,24,10,28)( 7,22,11,25)( 8,21,12,26)$ |
| 4E | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,28, 4,26)( 2,27, 3,25)( 5,14, 7,16)( 6,13, 8,15)( 9,17,11,19)(10,18,12,20)(21,32,24,29)(22,31,23,30)$ |
| 4F | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,19, 4,17)( 2,20, 3,18)( 5,24, 7,21)( 6,23, 8,22)( 9,28,11,26)(10,27,12,25)(13,31,15,30)(14,32,16,29)$ |
| 4G | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,27,32,23)( 2,28,31,24)( 3,26,30,21)( 4,25,29,22)( 5,13, 9,18)( 6,14,10,17)( 7,15,11,20)( 8,16,12,19)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C1 | 4C-1 | 4D | 4E | 4F | 4G | ||
| Size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2C | 2B | 2B | 2C | |
| Type | |||||||||||||||
| 32.29.1a | R | ||||||||||||||
| 32.29.1b | R | ||||||||||||||
| 32.29.1c | R | ||||||||||||||
| 32.29.1d | R | ||||||||||||||
| 32.29.1e | R | ||||||||||||||
| 32.29.1f | R | ||||||||||||||
| 32.29.1g | R | ||||||||||||||
| 32.29.1h | R | ||||||||||||||
| 32.29.2a | R | ||||||||||||||
| 32.29.2b | R | ||||||||||||||
| 32.29.2c | S | ||||||||||||||
| 32.29.2d | S | ||||||||||||||
| 32.29.2e1 | C | ||||||||||||||
| 32.29.2e2 | C |
Regular extensions
Data not computed