Properties

Label 32T14
32T14 1 7 1->7 8 1->8 2 2->7 2->8 3 5 3->5 6 3->6 4 4->5 4->6 12 5->12 26 5->26 11 6->11 25 6->25 9 7->9 27 7->27 10 8->10 28 8->28 29 9->29 30 9->30 10->29 10->30 31 11->31 32 11->32 12->31 12->32 13 13->2 20 13->20 14 14->1 19 14->19 15 15->3 17 15->17 16 16->4 18 16->18 22 17->22 23 17->23 21 18->21 24 18->24 19->22 19->23 20->21 20->24 21->9 21->27 22->10 22->28 23->11 23->25 24->12 24->26 25->13 25->16 26->14 26->15 27->14 27->15 28->13 28->16 29->4 29->18 30->3 30->17 31->1 31->19 32->2 32->20
Degree $32$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $C_4\wr C_2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(32, 14);
 

Group invariants

Abstract group:  $C_4\wr C_2$
Copy content magma:IdentifyGroup(G);
 
Order:  $32=2^{5}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $3$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $32$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $14$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $32$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7,27,14)(2,8,28,13)(3,5,26,15)(4,6,25,16)(9,29,18,21)(10,30,17,22)(11,31,19,23)(12,32,20,24)$, $(1,8,10,29,4,5,12,31)(2,7,9,30,3,6,11,32)(13,20,21,27,15,17,23,25)(14,19,22,28,16,18,24,26)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $D_{4}$ x 2, $C_4\times C_2$
$16$:  $C_2^2:C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4

Degree 8: $C_4\times C_2$, $D_4$ x 2, $C_2^2:C_4$ x 2, $C_4\wr C_2$ x 2

Degree 16: $C_2^2 : C_4$, 16T28, 16T42

Low degree siblings

8T17 x 2, 16T28, 16T42

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{32}$ $1$ $1$ $0$ $()$
2A $2^{16}$ $1$ $2$ $16$ $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$
2B $2^{16}$ $2$ $2$ $16$ $( 1,25)( 2,26)( 3,28)( 4,27)( 5,13)( 6,14)( 7,16)( 8,15)( 9,19)(10,20)(11,18)(12,17)(21,31)(22,32)(23,29)(24,30)$
2C $2^{16}$ $4$ $2$ $16$ $( 1, 3)( 2, 4)( 5,22)( 6,21)( 7,23)( 8,24)( 9,12)(10,11)(13,30)(14,29)(15,32)(16,31)(17,18)(19,20)(25,26)(27,28)$
4A1 $4^{8}$ $1$ $4$ $24$ $( 1,10, 4,12)( 2, 9, 3,11)( 5,31, 8,29)( 6,32, 7,30)(13,21,15,23)(14,22,16,24)(17,25,20,27)(18,26,19,28)$
4A-1 $4^{8}$ $1$ $4$ $24$ $( 1,12, 4,10)( 2,11, 3, 9)( 5,29, 8,31)( 6,30, 7,32)(13,23,15,21)(14,24,16,22)(17,27,20,25)(18,28,19,26)$
4B $4^{8}$ $2$ $4$ $24$ $( 1,20, 4,17)( 2,19, 3,18)( 5,21, 8,23)( 6,22, 7,24)( 9,28,11,26)(10,27,12,25)(13,31,15,29)(14,32,16,30)$
4C1 $4^{8}$ $2$ $4$ $24$ $( 1,22,25,32)( 2,21,26,31)( 3,23,28,29)( 4,24,27,30)( 5,11,13,18)( 6,12,14,17)( 7,10,16,20)( 8, 9,15,19)$
4C-1 $4^{8}$ $2$ $4$ $24$ $( 1,32,25,22)( 2,31,26,21)( 3,29,28,23)( 4,30,27,24)( 5,18,13,11)( 6,17,14,12)( 7,20,16,10)( 8,19,15, 9)$
4D1 $4^{8}$ $2$ $4$ $24$ $( 1,16,27, 6)( 2,15,28, 5)( 3,13,26, 8)( 4,14,25, 7)( 9,23,18,31)(10,24,17,32)(11,21,19,29)(12,22,20,30)$
4D-1 $4^{8}$ $2$ $4$ $24$ $( 1, 6,27,16)( 2, 5,28,15)( 3, 8,26,13)( 4, 7,25,14)( 9,31,18,23)(10,32,17,24)(11,29,19,21)(12,30,20,22)$
4E $4^{8}$ $4$ $4$ $24$ $( 1,26, 4,28)( 2,25, 3,27)( 5,30, 8,32)( 6,29, 7,31)( 9,20,11,17)(10,19,12,18)(13,22,15,24)(14,21,16,23)$
8A1 $8^{4}$ $4$ $8$ $28$ $( 1, 5,10,31, 4, 8,12,29)( 2, 6, 9,32, 3, 7,11,30)(13,17,21,25,15,20,23,27)(14,18,22,26,16,19,24,28)$
8A-1 $8^{4}$ $4$ $8$ $28$ $( 1,15,12,21, 4,13,10,23)( 2,16,11,22, 3,14, 9,24)( 5,17,29,27, 8,20,31,25)( 6,18,30,28, 7,19,32,26)$

Malle's constant $a(G)$:     $1/16$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 4A1 4A-1 4B 4C1 4C-1 4D1 4D-1 4E 8A1 8A-1
Size 1 1 2 4 1 1 2 2 2 2 2 4 4 4
2 P 1A 1A 1A 1A 2A 2A 2A 2B 2B 2B 2B 2A 4A1 4A-1
Type
32.11.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.11.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.11.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.11.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.11.1e1 C 1 1 1 1 1 1 i i i 1 i 1 i i
32.11.1e2 C 1 1 1 1 1 1 i i i 1 i 1 i i
32.11.1f1 C 1 1 1 1 1 1 i i i 1 i 1 i i
32.11.1f2 C 1 1 1 1 1 1 i i i 1 i 1 i i
32.11.2a R 2 2 2 0 2 2 0 0 0 2 0 0 0 0
32.11.2b R 2 2 2 0 2 2 0 0 0 2 0 0 0 0
32.11.2c1 C 2 2 0 0 2i 2i 1+i 1i 1+i 0 1i 0 0 0
32.11.2c2 C 2 2 0 0 2i 2i 1i 1+i 1i 0 1+i 0 0 0
32.11.2d1 C 2 2 0 0 2i 2i 1i 1+i 1i 0 1+i 0 0 0
32.11.2d2 C 2 2 0 0 2i 2i 1+i 1i 1+i 0 1i 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed