Group action invariants
| Degree $n$ : | $32$ | |
| Transitive number $t$ : | $14$ | |
| Group : | $C_4\wr C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,7,27,14)(2,8,28,13)(3,5,26,15)(4,6,25,16)(9,29,18,21)(10,30,17,22)(11,31,19,23)(12,32,20,24), (1,8,10,29,4,5,12,31)(2,7,9,30,3,6,11,32)(13,20,21,27,15,17,23,25)(14,19,22,28,16,18,24,26) | |
| $|\Aut(F/K)|$: | $32$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $C_2^2:C_4$ x 2, $C_4\wr C_2$ x 2
Degree 16: $C_2^2 : C_4$, 16T28, 16T42
Low degree siblings
8T17 x 2, 16T28, 16T42Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,24)( 6,23)( 7,21)( 8,22)( 9,10)(11,12)(13,32)(14,31)(15,30) (16,29)(17,19)(18,20)(25,28)(26,27)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,23) (22,24)(25,27)(26,28)(29,31)(30,32)$ |
| $ 8, 8, 8, 8 $ | $4$ | $8$ | $( 1, 5,10,31, 4, 8,12,29)( 2, 6, 9,32, 3, 7,11,30)(13,17,21,25,15,20,23,27) (14,18,22,26,16,19,24,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,27,16)( 2, 5,28,15)( 3, 8,26,13)( 4, 7,25,14)( 9,31,18,23)(10,32,17,24) (11,29,19,21)(12,30,20,22)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7,27,14)( 2, 8,28,13)( 3, 5,26,15)( 4, 6,25,16)( 9,29,18,21)(10,30,17,22) (11,31,19,23)(12,32,20,24)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 4,11)( 2,10, 3,12)( 5,14, 8,16)( 6,13, 7,15)(17,28,20,26)(18,27,19,25) (21,30,23,32)(22,29,24,31)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,10, 4,12)( 2, 9, 3,11)( 5,31, 8,29)( 6,32, 7,30)(13,21,15,23)(14,22,16,24) (17,25,20,27)(18,26,19,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,12, 4,10)( 2,11, 3, 9)( 5,29, 8,31)( 6,30, 7,32)(13,23,15,21)(14,24,16,22) (17,27,20,25)(18,28,19,26)$ |
| $ 8, 8, 8, 8 $ | $4$ | $8$ | $( 1,13,12,23, 4,15,10,21)( 2,14,11,24, 3,16, 9,22)( 5,20,29,25, 8,17,31,27) ( 6,19,30,26, 7,18,32,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,14,27, 7)( 2,13,28, 8)( 3,15,26, 5)( 4,16,25, 6)( 9,21,18,29)(10,22,17,30) (11,23,19,31)(12,24,20,32)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,16,27, 6)( 2,15,28, 5)( 3,13,26, 8)( 4,14,25, 7)( 9,23,18,31)(10,24,17,32) (11,21,19,29)(12,22,20,30)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,17, 4,20)( 2,18, 3,19)( 5,23, 8,21)( 6,24, 7,22)( 9,26,11,28)(10,25,12,27) (13,29,15,31)(14,30,16,32)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,25)( 2,26)( 3,28)( 4,27)( 5,13)( 6,14)( 7,16)( 8,15)( 9,19)(10,20)(11,18) (12,17)(21,31)(22,32)(23,29)(24,30)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 11] |
| Character table: |
2 5 3 5 3 4 4 3 5 5 3 4 4 4 4
1a 2a 2b 8a 4a 4b 4c 4d 4e 8b 4f 4g 4h 2c
2P 1a 1a 1a 4d 2c 2c 2b 2b 2b 4e 2c 2c 2b 1a
3P 1a 2a 2b 8b 4g 4f 4c 4e 4d 8a 4b 4a 4h 2c
5P 1a 2a 2b 8a 4a 4b 4c 4d 4e 8b 4f 4g 4h 2c
7P 1a 2a 2b 8b 4g 4f 4c 4e 4d 8a 4b 4a 4h 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 1 -1 1 1 1 1
X.3 1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1
X.4 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1
X.5 1 -1 1 A -A -A 1 -1 -1 -A A A 1 -1
X.6 1 -1 1 -A A A 1 -1 -1 A -A -A 1 -1
X.7 1 1 1 A A A -1 -1 -1 -A -A -A 1 -1
X.8 1 1 1 -A -A -A -1 -1 -1 A A A 1 -1
X.9 2 . 2 . . . . -2 -2 . . . -2 2
X.10 2 . 2 . . . . 2 2 . . . -2 -2
X.11 2 . -2 . B -B . C -C . -/B /B . .
X.12 2 . -2 . /B -/B . -C C . -B B . .
X.13 2 . -2 . -/B /B . -C C . B -B . .
X.14 2 . -2 . -B B . C -C . /B -/B . .
A = -E(4)
= -Sqrt(-1) = -i
B = -1-E(4)
= -1-Sqrt(-1) = -1-i
C = 2*E(4)
= 2*Sqrt(-1) = 2i
|