Show commands: Magma
Group invariants
| Abstract group: | $C_4\wr C_2$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $14$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $32$ |
| |
| Generators: | $(1,7,27,14)(2,8,28,13)(3,5,26,15)(4,6,25,16)(9,29,18,21)(10,30,17,22)(11,31,19,23)(12,32,20,24)$, $(1,8,10,29,4,5,12,31)(2,7,9,30,3,6,11,32)(13,20,21,27,15,17,23,25)(14,19,22,28,16,18,24,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $C_2^2:C_4$ x 2, $C_4\wr C_2$ x 2
Degree 16: $C_2^2 : C_4$, 16T28, 16T42
Low degree siblings
8T17 x 2, 16T28, 16T42Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
| 2B | $2^{16}$ | $2$ | $2$ | $16$ | $( 1,25)( 2,26)( 3,28)( 4,27)( 5,13)( 6,14)( 7,16)( 8,15)( 9,19)(10,20)(11,18)(12,17)(21,31)(22,32)(23,29)(24,30)$ |
| 2C | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5,22)( 6,21)( 7,23)( 8,24)( 9,12)(10,11)(13,30)(14,29)(15,32)(16,31)(17,18)(19,20)(25,26)(27,28)$ |
| 4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,10, 4,12)( 2, 9, 3,11)( 5,31, 8,29)( 6,32, 7,30)(13,21,15,23)(14,22,16,24)(17,25,20,27)(18,26,19,28)$ |
| 4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,12, 4,10)( 2,11, 3, 9)( 5,29, 8,31)( 6,30, 7,32)(13,23,15,21)(14,24,16,22)(17,27,20,25)(18,28,19,26)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,20, 4,17)( 2,19, 3,18)( 5,21, 8,23)( 6,22, 7,24)( 9,28,11,26)(10,27,12,25)(13,31,15,29)(14,32,16,30)$ |
| 4C1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,22,25,32)( 2,21,26,31)( 3,23,28,29)( 4,24,27,30)( 5,11,13,18)( 6,12,14,17)( 7,10,16,20)( 8, 9,15,19)$ |
| 4C-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,32,25,22)( 2,31,26,21)( 3,29,28,23)( 4,30,27,24)( 5,18,13,11)( 6,17,14,12)( 7,20,16,10)( 8,19,15, 9)$ |
| 4D1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,16,27, 6)( 2,15,28, 5)( 3,13,26, 8)( 4,14,25, 7)( 9,23,18,31)(10,24,17,32)(11,21,19,29)(12,22,20,30)$ |
| 4D-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 6,27,16)( 2, 5,28,15)( 3, 8,26,13)( 4, 7,25,14)( 9,31,18,23)(10,32,17,24)(11,29,19,21)(12,30,20,22)$ |
| 4E | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,26, 4,28)( 2,25, 3,27)( 5,30, 8,32)( 6,29, 7,31)( 9,20,11,17)(10,19,12,18)(13,22,15,24)(14,21,16,23)$ |
| 8A1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1, 5,10,31, 4, 8,12,29)( 2, 6, 9,32, 3, 7,11,30)(13,17,21,25,15,20,23,27)(14,18,22,26,16,19,24,28)$ |
| 8A-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,15,12,21, 4,13,10,23)( 2,16,11,22, 3,14, 9,24)( 5,17,29,27, 8,20,31,25)( 6,18,30,28, 7,19,32,26)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B | 4C1 | 4C-1 | 4D1 | 4D-1 | 4E | 8A1 | 8A-1 | ||
| Size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2B | 2B | 2B | 2A | 4A1 | 4A-1 | |
| Type | |||||||||||||||
| 32.11.1a | R | ||||||||||||||
| 32.11.1b | R | ||||||||||||||
| 32.11.1c | R | ||||||||||||||
| 32.11.1d | R | ||||||||||||||
| 32.11.1e1 | C | ||||||||||||||
| 32.11.1e2 | C | ||||||||||||||
| 32.11.1f1 | C | ||||||||||||||
| 32.11.1f2 | C | ||||||||||||||
| 32.11.2a | R | ||||||||||||||
| 32.11.2b | R | ||||||||||||||
| 32.11.2c1 | C | ||||||||||||||
| 32.11.2c2 | C | ||||||||||||||
| 32.11.2d1 | C | ||||||||||||||
| 32.11.2d2 | C |
Regular extensions
Data not computed