Group action invariants
| Degree $n$ : | $32$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $D_4:C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,7,3,5)(2,8,4,6)(9,30,11,31)(10,29,12,32)(13,28,16,25)(14,27,15,26)(17,23,19,21)(18,24,20,22), (1,13,27,6,18,32,9,21)(2,14,28,5,17,31,10,22)(3,16,26,8,20,29,11,23)(4,15,25,7,19,30,12,24) | |
| $|\Aut(F/K)|$: | $32$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $D_{8}$, $QD_{16}$, $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $D_{8}$ x 2, $QD_{16}$, $C_2^2:C_4$ x 2
Degree 16: $C_2^2 : C_4$, $QD_{16}$, $D_{8}$, 16T26 x 2
Low degree siblings
16T26 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,29)( 6,30)( 7,32)( 8,31)( 9,28)(10,27)(11,25)(12,26)(13,24) (14,23)(15,21)(16,22)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)(17,19)(18,20)(21,23) (22,24)(25,28)(26,27)(29,32)(30,31)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 4)( 2, 3)( 5,32)( 6,31)( 7,29)( 8,30)( 9,25)(10,26)(11,28)(12,27)(13,22) (14,21)(15,23)(16,24)(17,20)(18,19)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,31,11,30)(10,32,12,29)(13,25,16,28)(14,26,15,27) (17,21,19,23)(18,22,20,24)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 6, 9,13,18,21,27,32)( 2, 5,10,14,17,22,28,31)( 3, 8,11,16,20,23,26,29) ( 4, 7,12,15,19,24,25,30)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 3, 5)( 2, 8, 4, 6)( 9,30,11,31)(10,29,12,32)(13,28,16,25)(14,27,15,26) (17,23,19,21)(18,24,20,22)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 8, 9,16,18,23,27,29)( 2, 7,10,15,17,24,28,30)( 3, 6,11,13,20,21,26,32) ( 4, 5,12,14,19,22,25,31)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 9,18,27)( 2,10,17,28)( 3,11,20,26)( 4,12,19,25)( 5,14,22,31)( 6,13,21,32) ( 7,15,24,30)( 8,16,23,29)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11,18,26)( 2,12,17,25)( 3, 9,20,27)( 4,10,19,28)( 5,15,22,30)( 6,16,21,29) ( 7,14,24,31)( 8,13,23,32)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,13,27, 6,18,32, 9,21)( 2,14,28, 5,17,31,10,22)( 3,16,26, 8,20,29,11,23) ( 4,15,25, 7,19,30,12,24)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,16,27, 8,18,29, 9,23)( 2,15,28, 7,17,30,10,24)( 3,13,26, 6,20,32,11,21) ( 4,14,25, 5,19,31,12,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5,22)( 6,21)( 7,24)( 8,23)( 9,27)(10,28)(11,26) (12,25)(13,32)(14,31)(15,30)(16,29)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,20)( 2,19)( 3,18)( 4,17)( 5,24)( 6,23)( 7,22)( 8,21)( 9,26)(10,25)(11,27) (12,28)(13,29)(14,30)(15,31)(16,32)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 9] |
| Character table: |
2 5 3 5 3 3 4 3 4 4 4 4 4 5 5
1a 2a 2b 2c 4a 8a 4b 8b 4c 4d 8c 8d 2d 2e
2P 1a 1a 1a 1a 2b 4c 2b 4c 2d 2d 4c 4c 1a 1a
3P 1a 2a 2b 2c 4b 8c 4a 8d 4c 4d 8a 8b 2d 2e
5P 1a 2a 2b 2c 4a 8d 4b 8c 4c 4d 8b 8a 2d 2e
7P 1a 2a 2b 2c 4b 8b 4a 8a 4c 4d 8d 8c 2d 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1
X.4 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
X.5 1 -1 -1 1 A -A -A A -1 1 A -A 1 -1
X.6 1 -1 -1 1 -A A A -A -1 1 -A A 1 -1
X.7 1 1 -1 -1 A A -A -A -1 1 -A A 1 -1
X.8 1 1 -1 -1 -A -A A A -1 1 A -A 1 -1
X.9 2 . -2 . . . . . 2 -2 . . 2 -2
X.10 2 . 2 . . . . . -2 -2 . . 2 2
X.11 2 . -2 . . B . -B . . B -B -2 2
X.12 2 . -2 . . -B . B . . -B B -2 2
X.13 2 . 2 . . C . C . . -C -C -2 -2
X.14 2 . 2 . . -C . -C . . C C -2 -2
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
C = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|