Group action invariants
| Degree $n$ : | $32$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $C_2^2\times D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,18)(2,17)(3,19)(4,20)(5,24)(6,23)(7,22)(8,21)(9,27)(10,28)(11,26)(12,25)(13,32)(14,31)(15,29)(16,30), (1,7)(2,8)(3,6)(4,5)(9,30)(10,29)(11,32)(12,31)(13,23)(14,24)(15,21)(16,22)(17,28)(18,27)(19,26)(20,25), (1,23,30,26)(2,24,29,25)(3,22,32,27)(4,21,31,28)(5,17,12,15)(6,18,11,16)(7,19,9,13)(8,20,10,14), (1,10)(2,9)(3,12)(4,11)(5,32)(6,31)(7,29)(8,30)(13,24)(14,23)(15,22)(16,21)(17,27)(18,28)(19,25)(20,26) | |
| $|\Aut(F/K)|$: | $32$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 4, $C_2^3$ x 15 16: $D_4\times C_2$ x 6, $C_2^4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 15
Degree 4: $C_2^2$ x 35, $D_{4}$ x 8
Degree 8: $C_2^3$ x 15, $D_4$ x 4, $D_4\times C_2$ x 24
Degree 16: $C_2^4$, $D_4\times C_2$ x 6, $C_2^2 \times D_4$ x 8
Low degree siblings
16T25 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,20)(14,19)(15,18)(16,17)(21,27) (22,28)(23,25)(24,26)(29,30)(31,32)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)(17,20)(18,19)(21,24) (22,23)(25,28)(26,27)(29,31)(30,32)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,17)(14,18)(15,19)(16,20)(21,26) (22,25)(23,28)(24,27)(29,32)(30,31)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,31)(10,32)(11,29)(12,30)(13,28)(14,27)(15,26) (16,25)(17,23)(18,24)(19,21)(20,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,32)(10,31)(11,30)(12,29)(13,22)(14,21)(15,24) (16,23)(17,25)(18,26)(19,27)(20,28)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,30)(10,29)(11,32)(12,31)(13,23)(14,24)(15,21) (16,22)(17,28)(18,27)(19,26)(20,25)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27) (16,28)(17,22)(18,21)(19,24)(20,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,32)( 6,31)( 7,29)( 8,30)(13,24)(14,23)(15,22) (16,21)(17,27)(18,28)(19,25)(20,26)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,30)( 6,29)( 7,31)( 8,32)(13,21)(14,22)(15,23) (16,24)(17,26)(18,25)(19,28)(20,27)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,28)( 6,27)( 7,26)( 8,25)( 9,23)(10,24)(11,22) (12,21)(17,31)(18,32)(19,30)(20,29)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,14,30,20)( 2,13,29,19)( 3,15,32,17)( 4,16,31,18)( 5,27,12,22)( 6,28,11,21) ( 7,25, 9,24)( 8,26,10,23)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15,30,17)( 2,16,29,18)( 3,14,32,20)( 4,13,31,19)( 5,26,12,23)( 6,25,11,24) ( 7,28, 9,21)( 8,27,10,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,25)( 6,26)( 7,27)( 8,28)( 9,22)(10,21)(11,23) (12,24)(17,29)(18,30)(19,32)(20,31)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,21)( 2,22)( 3,24)( 4,23)( 5,19)( 6,20)( 7,17)( 8,18)( 9,15)(10,16)(11,14) (12,13)(25,32)(26,31)(27,29)(28,30)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,22,30,27)( 2,21,29,28)( 3,23,32,26)( 4,24,31,25)( 5,20,12,14)( 6,19,11,13) ( 7,18, 9,16)( 8,17,10,15)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,23,30,26)( 2,24,29,25)( 3,22,32,27)( 4,21,31,28)( 5,17,12,15)( 6,18,11,16) ( 7,19, 9,13)( 8,20,10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,24)( 2,23)( 3,21)( 4,22)( 5,18)( 6,17)( 7,20)( 8,19)( 9,14)(10,13)(11,15) (12,16)(25,30)(26,29)(27,31)(28,32)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,30)( 2,29)( 3,32)( 4,31)( 5,12)( 6,11)( 7, 9)( 8,10)(13,19)(14,20)(15,17) (16,18)(21,28)(22,27)(23,26)(24,25)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,32)( 2,31)( 3,30)( 4,29)( 5,10)( 6, 9)( 7,11)( 8,12)(13,18)(14,17)(15,20) (16,19)(21,25)(22,26)(23,27)(24,28)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 46] |
| Character table: |
2 5 4 5 4 5 4 4 5 5 5 4 4 4 4 4 4 4 4 5 5
1a 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 4a 4b 2k 2l 4c 4d 2m 2n 2o
2P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 2n 2n 1a 1a 2n 2n 1a 1a 1a
3P 1a 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 4a 4b 2k 2l 4c 4d 2m 2n 2o
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1
X.3 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1
X.4 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1
X.5 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1
X.6 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 1
X.7 1 -1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1
X.8 1 -1 1 -1 1 -1 -1 1 1 1 -1 1 1 -1 -1 1 1 -1 1 1
X.9 1 -1 1 -1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 1
X.10 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 1 -1
X.11 1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 -1 1 1 1 -1
X.12 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 -1
X.13 1 1 -1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1
X.14 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
X.15 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
X.16 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
X.17 2 . -2 . -2 . . 2 -2 2 . . . . . . . . -2 2
X.18 2 . -2 . 2 . . -2 2 -2 . . . . . . . . -2 2
X.19 2 . 2 . -2 . . -2 2 2 . . . . . . . . -2 -2
X.20 2 . 2 . 2 . . 2 -2 -2 . . . . . . . . -2 -2
|