Group action invariants
| Degree $n$ : | $32$ | |
| Transitive number $t$ : | $10$ | |
| Group : | $C_2^2:C_8$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,22,10,29,19,5,27,13)(2,21,9,30,20,6,28,14)(3,24,11,31,18,8,26,16)(4,23,12,32,17,7,25,15), (1,9,19,28)(2,10,20,27)(3,12,18,25)(4,11,17,26)(5,32,22,15)(6,31,21,16)(7,29,23,13)(8,30,24,14) | |
| $|\Aut(F/K)|$: | $32$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_8$ x 2, $C_4\times C_2$, $D_4$ x 2, $C_8:C_2$, $C_2^2:C_4$ x 2
Degree 16: $C_8\times C_2$, $C_8: C_2$, $C_2^2 : C_4$, $C_2^2 : C_8$ x 2
Low degree siblings
16T24 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5,23)( 6,24)( 7,22)( 8,21)( 9,10)(11,12)(13,32)(14,31)(15,29) (16,30)(17,18)(19,20)(25,26)(27,28)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,23) (22,24)(25,28)(26,27)(29,31)(30,32)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5,21)( 6,22)( 7,24)( 8,23)( 9,11)(10,12)(13,30)(14,29)(15,31) (16,32)(17,19)(18,20)(25,27)(26,28)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 5,10,13,19,22,27,29)( 2, 6, 9,14,20,21,28,30)( 3, 8,11,16,18,24,26,31) ( 4, 7,12,15,17,23,25,32)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 6,26,32,19,21,11,15)( 2, 5,25,31,20,22,12,16)( 3, 7,27,30,18,23,10,14) ( 4, 8,28,29,17,24, 9,13)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 7,26,30,19,23,11,14)( 2, 8,25,29,20,24,12,13)( 3, 6,27,32,18,21,10,15) ( 4, 5,28,31,17,22, 9,16)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 8,10,16,19,24,27,31)( 2, 7, 9,15,20,23,28,32)( 3, 5,11,13,18,22,26,29) ( 4, 6,12,14,17,21,25,30)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 9,19,28)( 2,10,20,27)( 3,12,18,25)( 4,11,17,26)( 5,32,22,15)( 6,31,21,16) ( 7,29,23,13)( 8,30,24,14)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,10,19,27)( 2, 9,20,28)( 3,11,18,26)( 4,12,17,25)( 5,13,22,29)( 6,14,21,30) ( 7,15,23,32)( 8,16,24,31)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,11,19,26)( 2,12,20,25)( 3,10,18,27)( 4, 9,17,28)( 5,16,22,31)( 6,15,21,32) ( 7,14,23,30)( 8,13,24,29)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,12,19,25)( 2,11,20,26)( 3, 9,18,28)( 4,10,17,27)( 5,30,22,14)( 6,29,21,13) ( 7,31,23,16)( 8,32,24,15)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,13,27, 5,19,29,10,22)( 2,14,28, 6,20,30, 9,21)( 3,16,26, 8,18,31,11,24) ( 4,15,25, 7,17,32,12,23)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,14,11,23,19,30,26, 7)( 2,13,12,24,20,29,25, 8)( 3,15,10,21,18,32,27, 6) ( 4,16, 9,22,17,31,28, 5)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,15,11,21,19,32,26, 6)( 2,16,12,22,20,31,25, 5)( 3,14,10,23,18,30,27, 7) ( 4,13, 9,24,17,29,28, 8)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,16,27, 8,19,31,10,24)( 2,15,28, 7,20,32, 9,23)( 3,13,26, 5,18,29,11,22) ( 4,14,25, 6,17,30,12,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,18)( 2,17)( 3,19)( 4,20)( 5,24)( 6,23)( 7,21)( 8,22)( 9,25)(10,26)(11,27) (12,28)(13,31)(14,32)(15,30)(16,29)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,19)( 2,20)( 3,18)( 4,17)( 5,22)( 6,21)( 7,23)( 8,24)( 9,28)(10,27)(11,26) (12,25)(13,29)(14,30)(15,32)(16,31)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,26,19,11)( 2,25,20,12)( 3,27,18,10)( 4,28,17, 9)( 5,31,22,16)( 6,32,21,15) ( 7,30,23,14)( 8,29,24,13)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,27,19,10)( 2,28,20, 9)( 3,26,18,11)( 4,25,17,12)( 5,29,22,13)( 6,30,21,14) ( 7,32,23,15)( 8,31,24,16)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 5] |
| Character table: |
2 5 4 5 4 4 4 4 4 4 5 5 4 4 4 4 4 5 5 5 5
1a 2a 2b 2c 8a 8b 8c 8d 4a 4b 4c 4d 8e 8f 8g 8h 2d 2e 4e 4f
2P 1a 1a 1a 1a 4b 4e 4e 4b 2e 2e 2e 2e 4f 4c 4c 4f 1a 1a 2e 2e
3P 1a 2a 2b 2c 8e 8f 8g 8h 4d 4f 4e 4a 8a 8b 8c 8d 2d 2e 4c 4b
5P 1a 2a 2b 2c 8d 8c 8b 8a 4a 4b 4c 4d 8h 8g 8f 8e 2d 2e 4e 4f
7P 1a 2a 2b 2c 8h 8g 8f 8e 4d 4f 4e 4a 8d 8c 8b 8a 2d 2e 4c 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 1 1
X.3 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 1 1 1
X.4 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
X.5 1 -1 -1 1 A -A A -A B -B B -B -/A /A -/A /A 1 -1 -B B
X.6 1 -1 -1 1 -/A /A -/A /A -B B -B B A -A A -A 1 -1 B -B
X.7 1 -1 -1 1 /A -/A /A -/A -B B -B B -A A -A A 1 -1 B -B
X.8 1 -1 -1 1 -A A -A A B -B B -B /A -/A /A -/A 1 -1 -B B
X.9 1 -1 1 -1 B -B -B B 1 -1 -1 1 -B B B -B 1 1 -1 -1
X.10 1 -1 1 -1 -B B B -B 1 -1 -1 1 B -B -B B 1 1 -1 -1
X.11 1 1 -1 -1 A A -A -A -B -B B B -/A -/A /A /A 1 -1 -B B
X.12 1 1 -1 -1 -/A -/A /A /A B B -B -B A A -A -A 1 -1 B -B
X.13 1 1 -1 -1 /A /A -/A -/A B B -B -B -A -A A A 1 -1 B -B
X.14 1 1 -1 -1 -A -A A A -B -B B B /A /A -/A -/A 1 -1 -B B
X.15 1 1 1 1 B B B B -1 -1 -1 -1 -B -B -B -B 1 1 -1 -1
X.16 1 1 1 1 -B -B -B -B -1 -1 -1 -1 B B B B 1 1 -1 -1
X.17 2 . -2 . . . . . . -2 2 . . . . . -2 2 2 -2
X.18 2 . -2 . . . . . . 2 -2 . . . . . -2 2 -2 2
X.19 2 . 2 . . . . . . C C . . . . . -2 -2 -C -C
X.20 2 . 2 . . . . . . -C -C . . . . . -2 -2 C C
A = -E(8)
B = -E(4)
= -Sqrt(-1) = -i
C = -2*E(4)
= -2*Sqrt(-1) = -2i
|