Group action invariants
| Degree $n$ : | $32$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_2\times OD_{16}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,23,9,31,20,8,27,15)(2,24,10,32,19,7,28,16)(3,21,11,30,17,5,26,13)(4,22,12,29,18,6,25,14), (1,19)(2,20)(3,18)(4,17)(5,6)(7,8)(9,28)(10,27)(11,25)(12,26)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32), (1,12,20,25)(2,11,19,26)(3,10,17,28)(4,9,18,27)(5,32,21,16)(6,31,22,15)(7,30,24,13)(8,29,23,14) | |
| $|\Aut(F/K)|$: | $32$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $C_4\times C_2$ x 6, $C_2^3$ 16: $C_8:C_2$ x 2, $C_4\times C_2^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_4$ x 4, $C_2^2$ x 7
Degree 8: $C_4\times C_2$ x 6, $C_2^3$, $C_8:C_2$ x 2
Degree 16: $C_4\times C_2^2$, $C_8: C_2$ x 2, $C_2 \times (C_8:C_2)$ x 2
Low degree siblings
16T15 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5,22)( 6,21)( 7,23)( 8,24)( 9,10)(11,12)(13,29)(14,30)(15,32) (16,31)(17,18)(19,20)(25,26)(27,28)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,23) (22,24)(25,28)(26,27)(29,32)(30,31)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5,24)( 6,23)( 7,21)( 8,22)( 9,12)(10,11)(13,32)(14,31)(15,29) (16,30)(17,19)(18,20)(25,27)(26,28)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 5, 9,13,20,21,27,30)( 2, 6,10,14,19,22,28,29)( 3, 8,11,15,17,23,26,31) ( 4, 7,12,16,18,24,25,32)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 6,27,29,20,22, 9,14)( 2, 5,28,30,19,21,10,13)( 3, 7,26,32,17,24,11,16) ( 4, 8,25,31,18,23,12,15)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 7,27,32,20,24, 9,16)( 2, 8,28,31,19,23,10,15)( 3, 6,26,29,17,22,11,14) ( 4, 5,25,30,18,21,12,13)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1, 8, 9,15,20,23,27,31)( 2, 7,10,16,19,24,28,32)( 3, 5,11,13,17,21,26,30) ( 4, 6,12,14,18,22,25,29)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 9,20,27)( 2,10,19,28)( 3,11,17,26)( 4,12,18,25)( 5,13,21,30)( 6,14,22,29) ( 7,16,24,32)( 8,15,23,31)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,10,20,28)( 2, 9,19,27)( 3,12,17,25)( 4,11,18,26)( 5,29,21,14)( 6,30,22,13) ( 7,31,24,15)( 8,32,23,16)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,11,20,26)( 2,12,19,25)( 3, 9,17,27)( 4,10,18,28)( 5,15,21,31)( 6,16,22,32) ( 7,14,24,29)( 8,13,23,30)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,12,20,25)( 2,11,19,26)( 3,10,17,28)( 4, 9,18,27)( 5,32,21,16)( 6,31,22,15) ( 7,30,24,13)( 8,29,23,14)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,13,27, 5,20,30, 9,21)( 2,14,28, 6,19,29,10,22)( 3,15,26, 8,17,31,11,23) ( 4,16,25, 7,18,32,12,24)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,14, 9,22,20,29,27, 6)( 2,13,10,21,19,30,28, 5)( 3,16,11,24,17,32,26, 7) ( 4,15,12,23,18,31,25, 8)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,15,27, 8,20,31, 9,23)( 2,16,28, 7,19,32,10,24)( 3,13,26, 5,17,30,11,21) ( 4,14,25, 6,18,29,12,22)$ |
| $ 8, 8, 8, 8 $ | $2$ | $8$ | $( 1,16, 9,24,20,32,27, 7)( 2,15,10,23,19,31,28, 8)( 3,14,11,22,17,29,26, 6) ( 4,13,12,21,18,30,25, 5)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,17)( 2,18)( 3,20)( 4,19)( 5,23)( 6,24)( 7,22)( 8,21)( 9,26)(10,25)(11,27) (12,28)(13,31)(14,32)(15,30)(16,29)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,20)( 2,19)( 3,17)( 4,18)( 5,21)( 6,22)( 7,24)( 8,23)( 9,27)(10,28)(11,26) (12,25)(13,30)(14,29)(15,31)(16,32)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,26,20,11)( 2,25,19,12)( 3,27,17, 9)( 4,28,18,10)( 5,31,21,15)( 6,32,22,16) ( 7,29,24,14)( 8,30,23,13)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,27,20, 9)( 2,28,19,10)( 3,26,17,11)( 4,25,18,12)( 5,30,21,13)( 6,29,22,14) ( 7,32,24,16)( 8,31,23,15)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 37] |
| Character table: |
2 5 4 5 4 4 4 4 4 5 4 5 4 4 4 4 4 5 5 5 5
1a 2a 2b 2c 8a 8b 8c 8d 4a 4b 4c 4d 8e 8f 8g 8h 2d 2e 4e 4f
2P 1a 1a 1a 1a 4a 4f 4f 4a 2e 2e 2e 2e 4f 4a 4f 4a 1a 1a 2e 2e
3P 1a 2a 2b 2c 8e 8f 8h 8g 4f 4b 4e 4d 8a 8b 8d 8c 2d 2e 4c 4a
5P 1a 2a 2b 2c 8a 8b 8c 8d 4a 4b 4c 4d 8e 8f 8g 8h 2d 2e 4e 4f
7P 1a 2a 2b 2c 8e 8f 8h 8g 4f 4b 4e 4d 8a 8b 8d 8c 2d 2e 4c 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1
X.3 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1
X.4 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1 1 1
X.5 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1 1 1
X.6 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1
X.7 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1
X.8 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
X.9 1 -1 -1 1 A -A A -A -1 1 1 -1 -A A A -A -1 1 1 -1
X.10 1 -1 -1 1 -A A -A A -1 1 1 -1 A -A -A A -1 1 1 -1
X.11 1 -1 1 -1 A -A -A A -1 1 -1 1 -A A -A A 1 1 -1 -1
X.12 1 -1 1 -1 -A A A -A -1 1 -1 1 A -A A -A 1 1 -1 -1
X.13 1 1 -1 -1 A A -A -A -1 -1 1 1 -A -A A A -1 1 1 -1
X.14 1 1 -1 -1 -A -A A A -1 -1 1 1 A A -A -A -1 1 1 -1
X.15 1 1 1 1 A A A A -1 -1 -1 -1 -A -A -A -A 1 1 -1 -1
X.16 1 1 1 1 -A -A -A -A -1 -1 -1 -1 A A A A 1 1 -1 -1
X.17 2 . -2 . . . . . B . -B . . . . . 2 -2 B -B
X.18 2 . -2 . . . . . -B . B . . . . . 2 -2 -B B
X.19 2 . 2 . . . . . B . B . . . . . -2 -2 -B -B
X.20 2 . 2 . . . . . -B . -B . . . . . -2 -2 B B
A = -E(4)
= -Sqrt(-1) = -i
B = -2*E(4)
= -2*Sqrt(-1) = -2i
|