Group action invariants
| Degree $n$ : | $31$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $C_{31}:C_{6}$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,26,25,30,5,6)(2,21,19,29,10,12)(3,16,13,28,15,18)(4,11,7,27,20,24)(8,22,14,23,9,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $31$ | $3$ | $( 2, 6,26)( 3,11,20)( 4,16,14)( 5,21, 8)( 7,31,27)( 9,10,15)(12,25,28) (13,30,22)(17,19,29)(18,24,23)$ |
| $ 6, 6, 6, 6, 6, 1 $ | $31$ | $6$ | $( 2, 7, 6,31,26,27)( 3,13,11,30,20,22)( 4,19,16,29,14,17)( 5,25,21,28, 8,12) ( 9,18,10,24,15,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $31$ | $3$ | $( 2,26, 6)( 3,20,11)( 4,14,16)( 5, 8,21)( 7,27,31)( 9,15,10)(12,28,25) (13,22,30)(17,29,19)(18,23,24)$ |
| $ 6, 6, 6, 6, 6, 1 $ | $31$ | $6$ | $( 2,27,26,31, 6, 7)( 3,22,20,30,11,13)( 4,17,14,29,16,19)( 5,12, 8,28,21,25) ( 9,23,15,24,10,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $31$ | $2$ | $( 2,31)( 3,30)( 4,29)( 5,28)( 6,27)( 7,26)( 8,25)( 9,24)(10,23)(11,22)(12,21) (13,20)(14,19)(15,18)(16,17)$ |
| $ 31 $ | $6$ | $31$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, 26,27,28,29,30,31)$ |
| $ 31 $ | $6$ | $31$ | $( 1, 3, 5, 7, 9,11,13,15,17,19,21,23,25,27,29,31, 2, 4, 6, 8,10,12,14,16,18, 20,22,24,26,28,30)$ |
| $ 31 $ | $6$ | $31$ | $( 1, 4, 7,10,13,16,19,22,25,28,31, 3, 6, 9,12,15,18,21,24,27,30, 2, 5, 8,11, 14,17,20,23,26,29)$ |
| $ 31 $ | $6$ | $31$ | $( 1, 5, 9,13,17,21,25,29, 2, 6,10,14,18,22,26,30, 3, 7,11,15,19,23,27,31, 4, 8,12,16,20,24,28)$ |
| $ 31 $ | $6$ | $31$ | $( 1, 9,17,25, 2,10,18,26, 3,11,19,27, 4,12,20,28, 5,13,21,29, 6,14,22,30, 7, 15,23,31, 8,16,24)$ |
Group invariants
| Order: | $186=2 \cdot 3 \cdot 31$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [186, 1] |
| Character table: |
2 1 1 1 1 1 1 . . . . .
3 1 1 1 1 1 1 . . . . .
31 1 . . . . . 1 1 1 1 1
1a 3a 6a 3b 6b 2a 31a 31b 31c 31d 31e
2P 1a 3b 3a 3a 3b 1a 31b 31d 31a 31e 31c
3P 1a 1a 2a 1a 2a 2a 31c 31a 31e 31b 31d
5P 1a 3b 6b 3a 6a 2a 31a 31b 31c 31d 31e
7P 1a 3a 6a 3b 6b 2a 31d 31e 31b 31c 31a
11P 1a 3b 6b 3a 6a 2a 31d 31e 31b 31c 31a
13P 1a 3a 6a 3b 6b 2a 31c 31a 31e 31b 31d
17P 1a 3b 6b 3a 6a 2a 31e 31c 31d 31a 31b
19P 1a 3a 6a 3b 6b 2a 31b 31d 31a 31e 31c
23P 1a 3b 6b 3a 6a 2a 31e 31c 31d 31a 31b
29P 1a 3b 6b 3a 6a 2a 31b 31d 31a 31e 31c
31P 1a 3a 6a 3b 6b 2a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 -1 1 1 1 1 1
X.3 1 A -/A /A -A -1 1 1 1 1 1
X.4 1 /A -A A -/A -1 1 1 1 1 1
X.5 1 A /A /A A 1 1 1 1 1 1
X.6 1 /A A A /A 1 1 1 1 1 1
X.7 6 . . . . . B F E C D
X.8 6 . . . . . C D F E B
X.9 6 . . . . . D E C B F
X.10 6 . . . . . E B D F C
X.11 6 . . . . . F C B D E
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(31)^4+E(31)^7+E(31)^11+E(31)^20+E(31)^24+E(31)^27
C = E(31)^3+E(31)^13+E(31)^15+E(31)^16+E(31)^18+E(31)^28
D = E(31)+E(31)^5+E(31)^6+E(31)^25+E(31)^26+E(31)^30
E = E(31)^2+E(31)^10+E(31)^12+E(31)^19+E(31)^21+E(31)^29
F = E(31)^8+E(31)^9+E(31)^14+E(31)^17+E(31)^22+E(31)^23
|