Group action invariants
| Degree $n$ : | $31$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $C_{31}:C_{5}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31), (1,16,8,4,2)(3,17,24,12,6)(5,18,9,20,10)(7,19,25,28,14)(11,21,26,13,22)(15,23,27,29,30) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 5: $C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 5, 5, 1 $ | $31$ | $5$ | $( 2, 3, 5, 9,17)( 4, 7,13,25,18)( 6,11,21,10,19)( 8,15,29,26,20) (12,23,14,27,22)(16,31,30,28,24)$ |
| $ 5, 5, 5, 5, 5, 5, 1 $ | $31$ | $5$ | $( 2, 5,17, 3, 9)( 4,13,18, 7,25)( 6,21,19,11,10)( 8,29,20,15,26) (12,14,22,23,27)(16,30,24,31,28)$ |
| $ 5, 5, 5, 5, 5, 5, 1 $ | $31$ | $5$ | $( 2, 9, 3,17, 5)( 4,25, 7,18,13)( 6,10,11,19,21)( 8,26,15,20,29) (12,27,23,22,14)(16,28,31,24,30)$ |
| $ 5, 5, 5, 5, 5, 5, 1 $ | $31$ | $5$ | $( 2,17, 9, 5, 3)( 4,18,25,13, 7)( 6,19,10,21,11)( 8,20,26,29,15) (12,22,27,14,23)(16,24,28,30,31)$ |
| $ 31 $ | $5$ | $31$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, 26,27,28,29,30,31)$ |
| $ 31 $ | $5$ | $31$ | $( 1, 4, 7,10,13,16,19,22,25,28,31, 3, 6, 9,12,15,18,21,24,27,30, 2, 5, 8,11, 14,17,20,23,26,29)$ |
| $ 31 $ | $5$ | $31$ | $( 1, 6,11,16,21,26,31, 5,10,15,20,25,30, 4, 9,14,19,24,29, 3, 8,13,18,23,28, 2, 7,12,17,22,27)$ |
| $ 31 $ | $5$ | $31$ | $( 1, 8,15,22,29, 5,12,19,26, 2, 9,16,23,30, 6,13,20,27, 3,10,17,24,31, 7,14, 21,28, 4,11,18,25)$ |
| $ 31 $ | $5$ | $31$ | $( 1,12,23, 3,14,25, 5,16,27, 7,18,29, 9,20,31,11,22, 2,13,24, 4,15,26, 6,17, 28, 8,19,30,10,21)$ |
| $ 31 $ | $5$ | $31$ | $( 1,16,31,15,30,14,29,13,28,12,27,11,26,10,25, 9,24, 8,23, 7,22, 6,21, 5,20, 4,19, 3,18, 2,17)$ |
Group invariants
| Order: | $155=5 \cdot 31$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [155, 1] |
| Character table: |
5 1 1 1 1 1 . . . . . .
31 1 . . . . 1 1 1 1 1 1
1a 5a 5b 5c 5d 31a 31b 31c 31d 31e 31f
2P 1a 5b 5d 5a 5c 31a 31b 31c 31d 31e 31f
3P 1a 5c 5a 5d 5b 31b 31c 31f 31e 31a 31d
5P 1a 1a 1a 1a 1a 31c 31f 31d 31a 31b 31e
7P 1a 5b 5d 5a 5c 31d 31e 31a 31c 31f 31b
11P 1a 5a 5b 5c 5d 31e 31a 31b 31f 31d 31c
13P 1a 5c 5a 5d 5b 31e 31a 31b 31f 31d 31c
17P 1a 5b 5d 5a 5c 31b 31c 31f 31e 31a 31d
19P 1a 5d 5c 5b 5a 31d 31e 31a 31c 31f 31b
23P 1a 5c 5a 5d 5b 31f 31d 31e 31b 31c 31a
29P 1a 5d 5c 5b 5a 31f 31d 31e 31b 31c 31a
31P 1a 5a 5b 5c 5d 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A B /B /A 1 1 1 1 1 1
X.3 1 B /A A /B 1 1 1 1 1 1
X.4 1 /B A /A B 1 1 1 1 1 1
X.5 1 /A /B B A 1 1 1 1 1 1
X.6 5 . . . . C E D /E /D /C
X.7 5 . . . . D /C /E C E /D
X.8 5 . . . . E D /C /D C /E
X.9 5 . . . . /C /E /D E D C
X.10 5 . . . . /E /D C D /C E
X.11 5 . . . . /D C E /C /E D
A = E(5)^4
B = E(5)^3
C = E(31)+E(31)^2+E(31)^4+E(31)^8+E(31)^16
D = E(31)^5+E(31)^9+E(31)^10+E(31)^18+E(31)^20
E = E(31)^3+E(31)^6+E(31)^12+E(31)^17+E(31)^24
|