Show commands:
Magma
magma: G := TransitiveGroup(31, 10);
Group action invariants
Degree $n$: | $31$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSL(5,2)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,19)(6,12)(9,24)(11,18)(15,16)(17,26)(23,27)(28,30), (1,5,4,3,2)(6,31,30,8,7)(9,29,28,23,10)(11,22,21,20,19)(12,18,26,14,13)(15,25,24,27,17) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
31T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $465$ | $2$ | $( 1,10)( 3,16)( 4,18)( 7,11)( 8,24)( 9,29)(15,20)(19,22)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1 $ | $19840$ | $3$ | $( 2, 5,30)( 3,29,24)( 4,19,11)( 6,27,13)( 7,18,22)( 8,16, 9)(21,23,25) (26,28,31)$ |
$ 4, 4, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $26040$ | $4$ | $( 1,15,10,20)( 3,19,16,22)( 4, 8,18,24)( 6,25)( 7,29,11, 9)(12,14)(13,23) (21,27)$ |
$ 6, 6, 3, 3, 3, 3, 2, 2, 1, 1, 1 $ | $416640$ | $6$ | $( 1,10)( 2,30, 5)( 3, 8,29,16,24, 9)( 4, 7,19,18,11,22)( 6,13,27)(15,20) (21,25,23)(26,31,28)$ |
$ 12, 6, 4, 3, 3, 2, 1 $ | $833280$ | $12$ | $( 1,20,10,15)( 2, 5,30)( 3, 7, 8,19,29,18,16,11,24,22, 9, 4)( 6,21,13,25,27,23 )(12,14)(26,28,31)$ |
$ 7, 7, 7, 7, 1, 1, 1 $ | $238080$ | $7$ | $( 1,26,23, 6,11, 9,30)( 2,29, 7,13,20,25,31)( 3, 4,22,21, 5, 8,14) (16,28,27,18,17,19,24)$ |
$ 7, 7, 7, 7, 1, 1, 1 $ | $238080$ | $7$ | $( 1,30, 9,11, 6,23,26)( 2,31,25,20,13, 7,29)( 3,14, 8, 5,21,22, 4) (16,24,19,17,18,27,28)$ |
$ 21, 7, 3 $ | $476160$ | $21$ | $( 1,27, 2,26,18,29,23,17, 7, 6,19,13,11,24,20, 9,16,25,30,28,31) ( 3, 8,21, 4,14, 5,22)(10,15,12)$ |
$ 21, 7, 3 $ | $476160$ | $21$ | $( 1,19,31, 6,28, 7,30,17,25,23,16,29, 9,18,20,26,24, 2,11,27,13) ( 3, 4,22,21, 5, 8,14)(10,15,12)$ |
$ 14, 7, 7, 2, 1 $ | $714240$ | $14$ | $( 1, 6,30,23, 9,26,11)( 2,18,31,27,25,28,20,16,13,24, 7,19,29,17) ( 3,21,14,22, 8, 4, 5)(10,12)$ |
$ 14, 7, 7, 2, 1 $ | $714240$ | $14$ | $( 1,23,11,30,26, 6, 9)( 2,27,20,24,29,18,25,16, 7,17,31,28,13,19) ( 3,22, 5,14, 4,21, 8)(10,12)$ |
$ 31 $ | $322560$ | $31$ | $( 1,14,29, 5,22,27,21,13,12, 8,26,28,10,25,16,19,23, 6,15, 7,20, 4,24,17, 2, 30,18, 9,31,11, 3)$ |
$ 31 $ | $322560$ | $31$ | $( 1,30, 7,25,13,14,18,20,16,12,29, 9, 4,19, 8, 5,31,24,23,26,22,11,17, 6,28, 27, 3, 2,15,10,21)$ |
$ 31 $ | $322560$ | $31$ | $( 1,27,26,19,20,30, 3,22, 8,16, 7, 2,11, 5,12,25,15,17,31,29,13,10, 6,24, 9, 14,21,28,23, 4,18)$ |
$ 31 $ | $322560$ | $31$ | $( 1, 3,11,31, 9,18,30, 2,17,24, 4,20, 7,15, 6,23,19,16,25,10,28,26, 8,12,13, 21,27,22, 5,29,14)$ |
$ 31 $ | $322560$ | $31$ | $( 1,21,10,15, 2, 3,27,28, 6,17,11,22,26,23,24,31, 5, 8,19, 4, 9,29,12,16,20, 18,14,13,25, 7,30)$ |
$ 31 $ | $322560$ | $31$ | $( 1,18, 4,23,28,21,14, 9,24, 6,10,13,29,31,17,15,25,12, 5,11, 2, 7,16, 8,22, 3,30,20,19,26,27)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $6510$ | $2$ | $( 1, 8)( 2,27)( 3,30)( 4, 5)( 6,15)( 7,12)(10,24)(11,14)(16,31)(18,28)(20,25) (21,26)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $55552$ | $3$ | $( 1, 6,12)( 2,20, 3)( 4,31,26)( 5,16,21)( 7, 8,15)( 9,23,22)(10,28,11) (13,29,17)(14,24,18)(25,30,27)$ |
$ 6, 6, 6, 6, 3, 3, 1 $ | $833280$ | $6$ | $( 1, 7, 6, 8,12,15)( 2,30,20,27, 3,25)( 4,21,31, 5,26,16)( 9,22,23) (10,14,28,24,11,18)(13,17,29)$ |
$ 4, 4, 4, 4, 4, 4, 2, 2, 1, 1, 1 $ | $312480$ | $4$ | $( 1,26, 8,21)( 2,24,27,10)( 3, 6,14, 4)( 5,30,15,11)( 7,28,31,20)( 9,22) (12,18,16,25)(19,29)$ |
$ 5, 5, 5, 5, 5, 5, 1 $ | $666624$ | $5$ | $( 1, 8, 4,13, 5)( 2,27,28, 9,18)( 3,30,10,22,24)( 6,15,31,29,16) ( 7,26,17,21,12)(11,23,14,20,25)$ |
$ 15, 15, 1 $ | $666624$ | $15$ | $( 1,26,16, 8,17, 6, 4,21,15,13,12,31, 5, 7,29)( 2,10,14,27,22,20,28,24,25, 9, 3,11,18,30,23)$ |
$ 15, 15, 1 $ | $666624$ | $15$ | $( 1,31,21, 8,29,12, 4,16, 7,13, 6,26, 5,15,17)( 2,11,24,27,23, 3,28,14,30, 9, 20,10,18,25,22)$ |
$ 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $78120$ | $4$ | $( 1,21,30, 3)( 2,22, 7, 5)( 6, 9)( 8,19)(10,31)(11,13)(12,23,24,15)(14,28) (17,25,18,29)(20,26)$ |
$ 8, 8, 4, 4, 4, 2, 1 $ | $624960$ | $8$ | $( 1,15,21,12,30,23, 3,24)( 2,17,22,25, 7,18, 5,29)( 6,31, 9,10)( 8,26,19,20) (11,28,13,14)(16,27)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $9999360=2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 9999360.a | magma: IdentifyGroup(G);
|
Character table: not available. |
magma: CharacterTable(G);