Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $9$ | |
| Group : | $A_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,6,7,3)(2,11,5,8,4)(9,21,30,27,17)(10,22,29,28,18)(13,25,15,20,23)(14,26,16,19,24), (1,13,5)(2,14,6)(3,19,9)(4,20,10)(7,18,15)(8,17,16)(11,28,21)(12,27,22)(23,29,25)(24,30,26) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: $A_5$
Degree 6: $\PSL(2,5)$
Degree 10: $A_{5}$
Degree 15: $A_5$
Low degree siblings
5T4, 6T12, 10T7, 12T33, 15T5, 20T15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 3,12)( 4,11)( 5, 8)( 6, 7)( 9,29)(10,30)(13,19)(14,20)(15,26)(16,25)(17,28) (18,27)(21,22)(23,24)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 3, 7, 6,12)( 2, 4, 8, 5,11)( 9,17,27,30,21)(10,18,28,29,22) (13,23,20,15,25)(14,24,19,16,26)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 4,27)( 2, 3,28)( 5,24,20)( 6,23,19)( 7,16,18)( 8,15,17)( 9,25,21) (10,26,22)(11,29,14)(12,30,13)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 4,29,25,18)( 2, 3,30,26,17)( 5,15,22, 9,14)( 6,16,21,10,13) ( 7,23,20,11,27)( 8,24,19,12,28)$ |
Group invariants
| Order: | $60=2^{2} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [60, 5] |
| Character table: |
2 2 2 . . .
3 1 . . 1 .
5 1 . 1 . 1
1a 2a 5a 3a 5b
2P 1a 1a 5b 3a 5a
3P 1a 2a 5b 1a 5a
5P 1a 2a 1a 3a 1a
X.1 1 1 1 1 1
X.2 3 -1 A . *A
X.3 3 -1 *A . A
X.4 4 . -1 1 -1
X.5 5 1 . -1 .
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|