Show commands:
Magma
magma: G := TransitiveGroup(30, 9);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,12,6,7,3)(2,11,5,8,4)(9,21,30,27,17)(10,22,29,28,18)(13,25,15,20,23)(14,26,16,19,24), (1,13,5)(2,14,6)(3,19,9)(4,20,10)(7,18,15)(8,17,16)(11,28,21)(12,27,22)(23,29,25)(24,30,26) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: $A_5$
Degree 6: $\PSL(2,5)$
Degree 10: $A_{5}$
Degree 15: $A_5$
Low degree siblings
5T4, 6T12, 10T7, 12T33, 15T5, 20T15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14},1^{2}$ | $15$ | $2$ | $14$ | $( 1,14)( 2,13)( 3,15)( 4,16)( 5, 6)( 7, 9)( 8,10)(11,21)(12,22)(17,20)(18,19)(23,30)(24,29)(25,26)$ |
3A | $3^{10}$ | $20$ | $3$ | $20$ | $( 1,30,10)( 2,29, 9)( 3,23,11)( 4,24,12)( 5,27,26)( 6,28,25)( 7,16,17)( 8,15,18)(13,20,22)(14,19,21)$ |
5A1 | $5^{6}$ | $12$ | $5$ | $24$ | $( 1, 3, 7, 6,12)( 2, 4, 8, 5,11)( 9,17,27,30,21)(10,18,28,29,22)(13,23,20,15,25)(14,24,19,16,26)$ |
5A2 | $5^{6}$ | $12$ | $5$ | $24$ | $( 1,11, 9,16,27)( 2,12,10,15,28)( 3,17, 5,23,13)( 4,18, 6,24,14)( 7,25,22,30,19)( 8,26,21,29,20)$ |
Malle's constant $a(G)$: $1/14$
magma: ConjugacyClasses(G);
Group invariants
Order: | $60=2^{2} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 60.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 5A1 | 5A2 | ||
Size | 1 | 15 | 20 | 12 | 12 | |
2 P | 1A | 1A | 3A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 1A | 1A | |
Type | ||||||
60.5.1a | R | |||||
60.5.3a1 | R | |||||
60.5.3a2 | R | |||||
60.5.4a | R | |||||
60.5.5a | R |
magma: CharacterTable(G);