Properties

Label 30T9
Degree $30$
Order $60$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $A_5$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(30, 9);
 

Group action invariants

Degree $n$:  $30$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $9$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $A_5$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,12,6,7,3)(2,11,5,8,4)(9,21,30,27,17)(10,22,29,28,18)(13,25,15,20,23)(14,26,16,19,24), (1,13,5)(2,14,6)(3,19,9)(4,20,10)(7,18,15)(8,17,16)(11,28,21)(12,27,22)(23,29,25)(24,30,26)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 5: $A_5$

Degree 6: $\PSL(2,5)$

Degree 10: $A_{5}$

Degree 15: $A_5$

Low degree siblings

5T4, 6T12, 10T7, 12T33, 15T5, 20T15

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{14},1^{2}$ $15$ $2$ $14$ $( 1,14)( 2,13)( 3,15)( 4,16)( 5, 6)( 7, 9)( 8,10)(11,21)(12,22)(17,20)(18,19)(23,30)(24,29)(25,26)$
3A $3^{10}$ $20$ $3$ $20$ $( 1,30,10)( 2,29, 9)( 3,23,11)( 4,24,12)( 5,27,26)( 6,28,25)( 7,16,17)( 8,15,18)(13,20,22)(14,19,21)$
5A1 $5^{6}$ $12$ $5$ $24$ $( 1, 3, 7, 6,12)( 2, 4, 8, 5,11)( 9,17,27,30,21)(10,18,28,29,22)(13,23,20,15,25)(14,24,19,16,26)$
5A2 $5^{6}$ $12$ $5$ $24$ $( 1,11, 9,16,27)( 2,12,10,15,28)( 3,17, 5,23,13)( 4,18, 6,24,14)( 7,25,22,30,19)( 8,26,21,29,20)$

Malle's constant $a(G)$:     $1/14$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $60=2^{2} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  60.5
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 5A1 5A2
Size 1 15 20 12 12
2 P 1A 1A 3A 5A2 5A1
3 P 1A 2A 1A 5A2 5A1
5 P 1A 2A 3A 1A 1A
Type
60.5.1a R 1 1 1 1 1
60.5.3a1 R 3 1 0 ζ51ζ5 ζ52ζ52
60.5.3a2 R 3 1 0 ζ52ζ52 ζ51ζ5
60.5.4a R 4 0 1 1 1
60.5.5a R 5 1 1 0 0

magma: CharacterTable(G);