Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $88$ | |
| Group : | $A_6$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,6)(7,13)(8,14)(9,17)(10,18)(11,12)(15,20)(16,19)(21,24)(22,23)(25,28)(26,27)(29,30), (1,19,11,7,3)(2,20,12,8,4)(5,29,23,15,9)(6,30,24,16,10)(13,25,17,27,21)(14,26,18,28,22) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: None
Degree 6: $A_6$
Degree 10: None
Degree 15: $A_6$
Low degree siblings
6T15 x 2, 10T26, 15T20 x 2, 20T89, 30T88, 36T555, 40T304, 45T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 5,26,27)( 6,25,28)( 7,13,10)( 8,14, 9)(11,24,15)(12,23,16)(19,29,21) (20,30,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 3, 6)( 4, 5)( 7,23)( 8,24)( 9,10)(11,12)(13,15)(14,16)(17,30)(18,29)(19,21) (20,22)(25,28)(26,27)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 2 $ | $90$ | $4$ | $( 1, 2)( 3,20,25,30)( 4,19,26,29)( 5,18,27,21)( 6,17,28,22)( 7,24, 8,23) ( 9,13,12,16)(10,14,11,15)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $72$ | $5$ | $( 1, 3, 7,11,19)( 2, 4, 8,12,20)( 5, 9,15,23,29)( 6,10,16,24,30) (13,21,27,17,25)(14,22,28,18,26)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $72$ | $5$ | $( 1, 3, 7,16,29)( 2, 4, 8,15,30)( 5,17,25,10,21)( 6,18,26, 9,22) (11,23,20,28,13)(12,24,19,27,14)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 3,18)( 2, 4,17)( 5, 8,19)( 6, 7,20)( 9,21,27)(10,22,28)(11,24,15) (12,23,16)(13,30,25)(14,29,26)$ |
Group invariants
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [360, 118] |
| Character table: |
2 3 . 3 2 . . .
3 2 2 . . . . 2
5 1 . . . 1 1 .
1a 3a 2a 4a 5a 5b 3b
2P 1a 3a 1a 2a 5b 5a 3b
3P 1a 1a 2a 4a 5b 5a 1a
5P 1a 3a 2a 4a 1a 1a 3b
X.1 1 1 1 1 1 1 1
X.2 5 2 1 -1 . . -1
X.3 5 -1 1 -1 . . 2
X.4 8 -1 . . A *A -1
X.5 8 -1 . . *A A -1
X.6 9 . 1 1 -1 -1 .
X.7 10 1 -2 . . . 1
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|