Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $C_3\times F_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,18,25,22,23,7,16,11,14,28,6)(2,3,17,26,21,24,8,15,12,13,27,5)(9,30,20,10,29,19), (1,7,13,20,26)(2,8,14,19,25)(3,9,15,22,28)(4,10,16,21,27)(5,11,18,24,29)(6,12,17,23,30) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $C_{12}$ 20: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 5: $F_5$
Degree 6: $C_6$
Degree 10: $F_5$
Degree 15: $F_5\times C_3$
Low degree siblings
15T8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 9)( 4,10)( 5,18)( 6,17)( 7,26)( 8,25)(13,20)(14,19)(15,28)(16,27)(23,30) (24,29)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2 $ | $5$ | $4$ | $( 1, 2)( 3,16, 9,27)( 4,15,10,28)( 5,30,18,23)( 6,29,17,24)( 7,14,26,19) ( 8,13,25,20)(11,12)(21,22)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2 $ | $5$ | $4$ | $( 1, 2)( 3,27, 9,16)( 4,28,10,15)( 5,23,18,30)( 6,24,17,29)( 7,19,26,14) ( 8,20,25,13)(11,12)(21,22)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 3, 5, 7, 9,11,13,15,18,20,22,24,26,28,29)( 2, 4, 6, 8,10,12,14,16,17,19, 21,23,25,27,30)$ |
| $ 6, 6, 6, 6, 3, 3 $ | $5$ | $6$ | $( 1, 3,11,13,22,24)( 2, 4,12,14,21,23)( 5,20,15,29,26, 9)( 6,19,16,30,25,10) ( 7,28,18)( 8,27,17)$ |
| $ 12, 12, 6 $ | $5$ | $12$ | $( 1, 4,18,25,22,23, 7,16,11,14,28, 6)( 2, 3,17,26,21,24, 8,15,12,13,27, 5) ( 9,30,20,10,29,19)$ |
| $ 12, 12, 6 $ | $5$ | $12$ | $( 1, 4,29, 8,22,23,20,27,11,14, 9,17)( 2, 3,30, 7,21,24,19,28,12,13,10,18) ( 5,25,15, 6,26,16)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 5, 9,13,18,22,26,29, 3, 7,11,15,20,24,28)( 2, 6,10,14,17,21,25,30, 4, 8, 12,16,19,23,27)$ |
| $ 6, 6, 6, 6, 3, 3 $ | $5$ | $6$ | $( 1, 5,22,26,11,15)( 2, 6,21,25,12,16)( 3,13,24)( 4,14,23)( 7,29,28,20,18, 9) ( 8,30,27,19,17,10)$ |
| $ 12, 12, 6 $ | $5$ | $12$ | $( 1, 6,28,14,11,16, 7,23,22,25,18, 4)( 2, 5,27,13,12,15, 8,24,21,26,17, 3) ( 9,19,29,10,20,30)$ |
| $ 12, 12, 6 $ | $5$ | $12$ | $( 1, 6, 3,19,11,16,13,30,22,25,24,10)( 2, 5, 4,20,12,15,14,29,21,26,23, 9) ( 7,17,28, 8,18,27)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 7,13,20,26)( 2, 8,14,19,25)( 3, 9,15,22,28)( 4,10,16,21,27) ( 5,11,18,24,29)( 6,12,17,23,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,11,22)( 2,12,21)( 3,13,24)( 4,14,23)( 5,15,26)( 6,16,25)( 7,18,28) ( 8,17,27)( 9,20,29)(10,19,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,22,11)( 2,21,12)( 3,24,13)( 4,23,14)( 5,26,15)( 6,25,16)( 7,28,18) ( 8,27,17)( 9,29,20)(10,30,19)$ |
Group invariants
| Order: | $60=2^{2} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [60, 6] |
| Character table: |
2 2 2 2 2 . 2 2 2 . 2 2 2 . 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 . . . 1 . . . 1 . . . 1 1 1
1a 2a 4a 4b 15a 6a 12a 12b 15b 6b 12c 12d 5a 3a 3b
2P 1a 1a 2a 2a 15b 3a 6b 6b 15a 3b 6a 6a 5a 3b 3a
3P 1a 2a 4b 4a 5a 2a 4b 4a 5a 2a 4a 4b 5a 1a 1a
5P 1a 2a 4a 4b 3a 6b 12d 12c 3b 6a 12b 12a 1a 3b 3a
7P 1a 2a 4b 4a 15a 6a 12b 12a 15b 6b 12d 12c 5a 3a 3b
11P 1a 2a 4b 4a 15b 6b 12c 12d 15a 6a 12a 12b 5a 3b 3a
13P 1a 2a 4a 4b 15a 6a 12a 12b 15b 6b 12c 12d 5a 3a 3b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1
X.3 1 -1 A -A 1 -1 A -A 1 -1 -A A 1 1 1
X.4 1 -1 -A A 1 -1 -A A 1 -1 A -A 1 1 1
X.5 1 -1 A -A B -B C -C /B -/B /C -/C 1 /B B
X.6 1 -1 A -A /B -/B -/C /C B -B -C C 1 B /B
X.7 1 -1 -A A B -B -C C /B -/B -/C /C 1 /B B
X.8 1 -1 -A A /B -/B /C -/C B -B C -C 1 B /B
X.9 1 1 -1 -1 B B -B -B /B /B -/B -/B 1 /B B
X.10 1 1 -1 -1 /B /B -/B -/B B B -B -B 1 B /B
X.11 1 1 1 1 B B B B /B /B /B /B 1 /B B
X.12 1 1 1 1 /B /B /B /B B B B B 1 B /B
X.13 4 . . . -1 . . . -1 . . . -1 4 4
X.14 4 . . . -/B . . . -B . . . -1 D /D
X.15 4 . . . -B . . . -/B . . . -1 /D D
A = -E(4)
= -Sqrt(-1) = -i
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
C = -E(12)^11
D = 4*E(3)^2
= -2-2*Sqrt(-3) = -2-2i3
|