Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $C_3:F_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,28,23,19,15,11,7,3,29,25,21,17,13,9,5)(2,27,24,20,16,12,8,4,30,26,22,18,14,10,6), (1,4,7,16)(2,3,8,15)(5,12,23,18)(6,11,24,17)(9,20)(10,19)(13,27,25,22)(14,28,26,21)(29,30) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 6: $S_3$ 12: $C_3 : C_4$ 20: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: $F_5$
Degree 6: $S_3$
Degree 10: $F_5$
Degree 15: $C_{15} : C_4$
Low degree siblings
15T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 9)( 4,10)( 5,17)( 6,18)( 7,25)( 8,26)(13,19)(14,20)(15,28)(16,27)(23,29) (24,30)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2 $ | $15$ | $4$ | $( 1, 2)( 3, 6, 9,18)( 4, 5,10,17)( 7,14,25,20)( 8,13,26,19)(11,22)(12,21) (15,30,28,24)(16,29,27,23)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2 $ | $15$ | $4$ | $( 1, 2)( 3,18, 9, 6)( 4,17,10, 5)( 7,20,25,14)( 8,19,26,13)(11,22)(12,21) (15,24,28,30)(16,23,27,29)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 3, 5, 7, 9,11,13,15,17,19,21,23,25,28,29)( 2, 4, 6, 8,10,12,14,16,18,20, 22,24,26,27,30)$ |
| $ 6, 6, 6, 6, 3, 3 $ | $10$ | $6$ | $( 1, 3,11,13,21,23)( 2, 4,12,14,22,24)( 5,19,15,29,25, 9)( 6,20,16,30,26,10) ( 7,28,17)( 8,27,18)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 7,13,19,25)( 2, 8,14,20,26)( 3, 9,15,21,28)( 4,10,16,22,27) ( 5,11,17,23,29)( 6,12,18,24,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,11,21)( 2,12,22)( 3,13,23)( 4,14,24)( 5,15,25)( 6,16,26)( 7,17,28) ( 8,18,27)( 9,19,29)(10,20,30)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1,15,29,13,28,11,25, 9,23, 7,21, 5,19, 3,17)( 2,16,30,14,27,12,26,10,24, 8, 22, 6,20, 4,18)$ |
Group invariants
| Order: | $60=2^{2} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [60, 7] |
| Character table: |
2 2 2 2 2 . 1 . 1 .
3 1 1 . . 1 1 1 1 1
5 1 . . . 1 . 1 1 1
1a 2a 4a 4b 15a 6a 5a 3a 15b
2P 1a 1a 2a 2a 15a 3a 5a 3a 15b
3P 1a 2a 4b 4a 5a 2a 5a 1a 5a
5P 1a 2a 4a 4b 3a 6a 1a 3a 3a
7P 1a 2a 4b 4a 15b 6a 5a 3a 15a
11P 1a 2a 4b 4a 15b 6a 5a 3a 15a
13P 1a 2a 4a 4b 15b 6a 5a 3a 15a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1
X.3 1 -1 A -A 1 -1 1 1 1
X.4 1 -1 -A A 1 -1 1 1 1
X.5 2 -2 . . -1 1 2 -1 -1
X.6 2 2 . . -1 -1 2 -1 -1
X.7 4 . . . -1 . -1 4 -1
X.8 4 . . . B . -1 -2 /B
X.9 4 . . . /B . -1 -2 B
A = -E(4)
= -Sqrt(-1) = -i
B = E(15)^7+E(15)^11+E(15)^13+E(15)^14
= (1-Sqrt(-15))/2 = -b15
|