Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $48$ | |
| Group : | $C_3^2:(C_5:C_4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8,15,4,11,3,7,14,6,10,2,9,13,5,12)(16,24,29,19,27,17,22,30,20,25,18,23,28,21,26), (1,26,3,25)(2,27)(4,23,6,22)(5,24)(7,20,9,19)(8,21)(10,17,12,16)(11,18)(13,29,15,28)(14,30) | |
| $|\Aut(F/K)|$: | $5$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ 20: 20T2 36: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 5: $D_{5}$
Degree 6: $C_3^2:C_4$
Degree 10: $D_5$
Degree 15: None
Low degree siblings
30T48, 45T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)(28,29,30)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)(16,19,22,25,28) (17,20,23,26,29)(18,21,24,27,30)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)(16,20,24,25,29,18,19,23,27, 28,17,21,22,26,30)$ |
| $ 10, 10, 5, 5 $ | $18$ | $10$ | $( 1, 4, 7,10,13)( 2, 6, 8,12,14, 3, 5, 9,11,15)(16,19,22,25,28) (17,21,23,27,29,18,20,24,26,30)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 5, 9,10,14, 3, 4, 8,12,13, 2, 6, 7,11,15)(16,19,22,25,28)(17,20,23,26,29) (18,21,24,27,30)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 5, 9,10,14, 3, 4, 8,12,13, 2, 6, 7,11,15)(16,20,24,25,29,18,19,23,27,28, 17,21,22,26,30)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 5, 9,10,14, 3, 4, 8,12,13, 2, 6, 7,11,15)(16,21,23,25,30,17,19,24,26,28, 18,20,22,27,29)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)(16,22,28,19,25) (17,23,29,20,26)(18,24,30,21,27)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)(16,23,30,19,26,18,22,29,21, 25,17,24,28,20,27)$ |
| $ 10, 10, 5, 5 $ | $18$ | $10$ | $( 1, 7,13, 4,10)( 2, 9,14, 6,11, 3, 8,15, 5,12)(16,22,28,19,25) (17,24,29,21,26,18,23,30,20,27)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 8,15, 4,11, 3, 7,14, 6,10, 2, 9,13, 5,12)(16,22,28,19,25)(17,23,29,20,26) (18,24,30,21,27)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 8,15, 4,11, 3, 7,14, 6,10, 2, 9,13, 5,12)(16,23,30,19,26,18,22,29,21,25, 17,24,28,20,27)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 8,15, 4,11, 3, 7,14, 6,10, 2, 9,13, 5,12)(16,24,29,19,27,17,22,30,20,25, 18,23,28,21,26)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 2, 2, 2 $ | $45$ | $4$ | $( 1,16)( 2,17, 3,18)( 4,28)( 5,29, 6,30)( 7,25)( 8,26, 9,27)(10,22) (11,23,12,24)(13,19)(14,20,15,21)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 2, 2, 2 $ | $45$ | $4$ | $( 1,16)( 2,18, 3,17)( 4,28)( 5,30, 6,29)( 7,25)( 8,27, 9,26)(10,22) (11,24,12,23)(13,19)(14,21,15,20)$ |
Group invariants
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [180, 24] |
| Character table: |
2 2 . 2 . 1 . 1 . . . 1 . 1 . . . 2 2
3 2 2 . 2 2 2 . 2 2 2 2 2 . 2 2 2 . .
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . .
1a 3a 2a 3b 5a 15a 10a 15b 15c 15d 5b 15e 10b 15f 15g 15h 4a 4b
2P 1a 3a 1a 3b 5b 15e 5b 15f 15g 15h 5a 15b 5a 15a 15d 15c 2a 2a
3P 1a 1a 2a 1a 5b 5b 10b 5b 5b 5b 5a 5a 10a 5a 5a 5a 4b 4a
5P 1a 3a 2a 3b 1a 3a 2a 3a 3b 3b 1a 3a 2a 3a 3b 3b 4a 4b
7P 1a 3a 2a 3b 5b 15e 10b 15f 15g 15h 5a 15b 10a 15a 15d 15c 4b 4a
11P 1a 3a 2a 3b 5a 15a 10a 15b 15c 15d 5b 15e 10b 15f 15g 15h 4b 4a
13P 1a 3a 2a 3b 5b 15f 10b 15e 15h 15g 5a 15a 10a 15b 15c 15d 4a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1
X.3 1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 1 1 E -E
X.4 1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 1 1 -E E
X.5 2 2 -2 2 A A -A A A A *A *A -*A *A *A *A . .
X.6 2 2 -2 2 *A *A -*A *A *A *A A A -A A A A . .
X.7 2 2 2 2 A A A A A A *A *A *A *A *A *A . .
X.8 2 2 2 2 *A *A *A *A *A *A A A A A A A . .
X.9 4 -2 . 1 4 -2 . -2 1 1 4 -2 . -2 1 1 . .
X.10 4 1 . -2 4 1 . 1 -2 -2 4 1 . 1 -2 -2 . .
X.11 4 -2 . 1 B -A . -A C /C *B -*A . -*A /D D . .
X.12 4 -2 . 1 B -A . -A /C C *B -*A . -*A D /D . .
X.13 4 -2 . 1 *B -*A . -*A D /D B -A . -A C /C . .
X.14 4 -2 . 1 *B -*A . -*A /D D B -A . -A /C C . .
X.15 4 1 . -2 B C . /C -A -A *B /D . D -*A -*A . .
X.16 4 1 . -2 B /C . C -A -A *B D . /D -*A -*A . .
X.17 4 1 . -2 *B D . /D -*A -*A B C . /C -A -A . .
X.18 4 1 . -2 *B /D . D -*A -*A B /C . C -A -A . .
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
B = 2*E(5)^2+2*E(5)^3
= -1-Sqrt(5) = -1-r5
C = -E(5)^2+2*E(5)^3
D = -E(5)+2*E(5)^4
E = -E(4)
= -Sqrt(-1) = -i
|