Properties

Label 30T47
Degree $30$
Order $180$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{15}:C_{12}$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(30, 47);
 

Group action invariants

Degree $n$:  $30$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $47$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_{15}:C_{12}$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $3$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,26,11,30,3,25,10,29,2,27,12,28)(4,18,7,22,6,17,9,24,5,16,8,23)(13,19,14,20,15,21), (1,8,15,4,12,2,9,13,5,10,3,7,14,6,11)(16,23,29,21,25,18,22,28,20,27,17,24,30,19,26)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$4$:  $C_4$
$6$:  $S_3$, $C_6$
$12$:  $C_{12}$, $C_3 : C_4$
$18$:  $S_3\times C_3$
$20$:  $F_5$
$36$:  $C_3\times (C_3 : C_4)$
$60$:  $C_{15} : C_4$, $F_5\times C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 5: $F_5$

Degree 6: $S_3\times C_3$

Degree 10: $F_5$

Degree 15: None

Low degree siblings

45T18

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrder IndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{12},1^{6}$ $5$ $2$ $12$ $( 1,10)( 2,11)( 3,12)( 4, 9)( 5, 7)( 6, 8)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)$
3A1 $3^{10}$ $1$ $3$ $20$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$
3A-1 $3^{10}$ $1$ $3$ $20$ $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$
3B $3^{5},1^{15}$ $2$ $3$ $10$ $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)$
3C1 $3^{10}$ $2$ $3$ $20$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$
3C-1 $3^{5},1^{15}$ $2$ $3$ $10$ $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$
4A1 $4^{6},2^{3}$ $15$ $4$ $21$ $( 1,28,10,25)( 2,29,11,26)( 3,30,12,27)( 4,23, 9,17)( 5,24, 7,18)( 6,22, 8,16)(13,21)(14,19)(15,20)$
4A-1 $4^{6},2^{3}$ $15$ $4$ $21$ $( 1,25,10,28)( 2,26,11,29)( 3,27,12,30)( 4,17, 9,23)( 5,18, 7,24)( 6,16, 8,22)(13,21)(14,19)(15,20)$
5A $5^{6}$ $4$ $5$ $24$ $( 1,14,10, 9, 4)( 2,15,11, 7, 5)( 3,13,12, 8, 6)(16,30,27,22,21)(17,28,25,23,19)(18,29,26,24,20)$
6A1 $6^{4},3^{2}$ $5$ $6$ $24$ $( 1,11, 3,10, 2,12)( 4, 7, 6, 9, 5, 8)(13,14,15)(16,23,18,22,17,24)(19,20,21)(25,29,27,28,26,30)$
6A-1 $6^{4},3^{2}$ $5$ $6$ $24$ $( 1,12, 2,10, 3,11)( 4, 8, 5, 9, 6, 7)(13,15,14)(16,24,17,22,18,23)(19,21,20)(25,30,26,28,27,29)$
6B $6^{4},3^{2}$ $10$ $6$ $24$ $( 1, 2, 3)( 4,15, 6,14, 5,13)( 7,12, 9,11, 8,10)(16,29,17,30,18,28)(19,27,20,25,21,26)(22,24,23)$
6C1 $6^{2},3,2^{6},1^{3}$ $10$ $6$ $18$ $( 1, 3, 2)( 4,13, 5,14, 6,15)( 7,10, 8,11, 9,12)(16,30)(17,28)(18,29)(19,25)(20,26)(21,27)$
6C-1 $6^{2},3,2^{6},1^{3}$ $10$ $6$ $18$ $( 4,14)( 5,15)( 6,13)( 7,11)( 8,12)( 9,10)(16,28,18,30,17,29)(19,26,21,25,20,27)(22,23,24)$
12A1 $12^{2},6$ $15$ $12$ $27$ $( 1,27,11,28, 3,26,10,30, 2,25,12,29)( 4,16, 7,23, 6,18, 9,22, 5,17, 8,24)(13,20,14,21,15,19)$
12A-1 $12^{2},6$ $15$ $12$ $27$ $( 1,29,12,25, 2,30,10,26, 3,28,11,27)( 4,24, 8,17, 5,22, 9,18, 6,23, 7,16)(13,19,15,21,14,20)$
12A5 $12^{2},6$ $15$ $12$ $27$ $( 1,26,12,28, 2,27,10,29, 3,25,11,30)( 4,18, 8,23, 5,16, 9,24, 6,17, 7,22)(13,19,15,21,14,20)$
12A-5 $12^{2},6$ $15$ $12$ $27$ $( 1,30,11,25, 3,29,10,27, 2,28,12,26)( 4,22, 7,17, 6,24, 9,16, 5,23, 8,18)(13,20,14,21,15,19)$
15A1 $15,5^{3}$ $4$ $15$ $26$ $( 1,12, 5,14, 8, 2,10, 6,15, 9, 3,11, 4,13, 7)(16,27,21,30,22)(17,25,19,28,23)(18,26,20,29,24)$
15A-1 $15^{2}$ $4$ $15$ $28$ $( 1,11, 6,14, 7, 3,10, 5,13, 9, 2,12, 4,15, 8)(16,26,19,30,24,17,27,20,28,22,18,25,21,29,23)$
15B1 $15,5^{3}$ $4$ $15$ $26$ $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,19,24,27,28,18,21,23,26,30,17,20,22,25,29)$
15B-1 $15^{2}$ $4$ $15$ $28$ $( 1,15,12, 9, 5, 3,14,11, 8, 4, 2,13,10, 7, 6)(16,28,26,22,19,18,30,25,24,21,17,29,27,23,20)$
15C1 $15,5^{3}$ $4$ $15$ $26$ $( 1,10, 4,14, 9)( 2,11, 5,15, 7)( 3,12, 6,13, 8)(16,25,20,30,23,18,27,19,29,22,17,26,21,28,24)$
15C-1 $15^{2}$ $4$ $15$ $28$ $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,20,23,27,29,17,21,24,25,30,18,19,22,26,28)$
15C2 $15,5^{3}$ $4$ $15$ $26$ $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,21,22,27,30)(17,19,23,25,28)(18,20,24,26,29)$
15C-2 $15^{2}$ $4$ $15$ $28$ $( 1,13,11, 9, 6, 2,14,12, 7, 4, 3,15,10, 8, 5)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19)$

Malle's constant $a(G)$:     $1/10$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $180=2^{2} \cdot 3^{2} \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  180.21
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A1 3A-1 3B 3C1 3C-1 4A1 4A-1 5A 6A1 6A-1 6B 6C1 6C-1 12A1 12A-1 12A5 12A-5 15A1 15A-1 15B1 15B-1 15C1 15C-1 15C2 15C-2
Size 1 5 1 1 2 2 2 15 15 4 5 5 10 10 10 15 15 15 15 4 4 4 4 4 4 4 4
2 P 1A 1A 3A-1 3A1 3C1 3B 3C-1 2A 2A 5A 3A-1 3A1 3B 3C1 3C-1 6A1 6A-1 6A-1 6A1 15C1 15B1 15C-1 15A1 15C2 15B-1 15C-2 15A-1
3 P 1A 2A 1A 1A 1A 1A 1A 4A-1 4A1 5A 2A 2A 2A 2A 2A 4A1 4A-1 4A1 4A-1 5A 5A 5A 5A 5A 5A 5A 5A
5 P 1A 2A 3A-1 3A1 3C1 3B 3C-1 4A1 4A-1 1A 6A-1 6A1 6B 6C-1 6C1 12A5 12A-5 12A1 12A-1 3C1 3B 3C-1 3A-1 3C-1 3B 3C1 3A1
Type
180.21.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
180.21.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
180.21.1c1 C 1 1 ζ31 ζ3 1 ζ3 ζ31 1 1 1 ζ31 ζ3 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 1 1 ζ31 ζ3 ζ3 ζ31
180.21.1c2 C 1 1 ζ3 ζ31 1 ζ31 ζ3 1 1 1 ζ3 ζ31 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 1 1 ζ3 ζ31 ζ31 ζ3
180.21.1d1 C 1 1 1 1 1 1 1 i i 1 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1
180.21.1d2 C 1 1 1 1 1 1 1 i i 1 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1
180.21.1e1 C 1 1 ζ31 ζ3 1 ζ3 ζ31 1 1 1 ζ31 ζ3 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 1 1 ζ31 ζ3 ζ3 ζ31
180.21.1e2 C 1 1 ζ3 ζ31 1 ζ31 ζ3 1 1 1 ζ3 ζ31 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 1 1 ζ3 ζ31 ζ31 ζ3
180.21.1f1 C 1 1 ζ122 ζ124 1 ζ124 ζ122 ζ123 ζ123 1 ζ122 ζ124 1 ζ122 ζ124 ζ12 ζ125 ζ125 ζ12 ζ124 ζ122 1 1 ζ122 ζ124 ζ124 ζ122
180.21.1f2 C 1 1 ζ124 ζ122 1 ζ122 ζ124 ζ123 ζ123 1 ζ124 ζ122 1 ζ124 ζ122 ζ125 ζ12 ζ12 ζ125 ζ122 ζ124 1 1 ζ124 ζ122 ζ122 ζ124
180.21.1f3 C 1 1 ζ122 ζ124 1 ζ124 ζ122 ζ123 ζ123 1 ζ122 ζ124 1 ζ122 ζ124 ζ12 ζ125 ζ125 ζ12 ζ124 ζ122 1 1 ζ122 ζ124 ζ124 ζ122
180.21.1f4 C 1 1 ζ124 ζ122 1 ζ122 ζ124 ζ123 ζ123 1 ζ124 ζ122 1 ζ124 ζ122 ζ125 ζ12 ζ12 ζ125 ζ122 ζ124 1 1 ζ124 ζ122 ζ122 ζ124
180.21.2a R 2 2 2 2 1 1 1 0 0 2 2 2 1 1 1 0 0 0 0 2 2 1 1 1 1 1 1
180.21.2b S 2 2 2 2 1 1 1 0 0 2 2 2 1 1 1 0 0 0 0 2 2 1 1 1 1 1 1
180.21.2c1 C 2 2 2ζ31 2ζ3 1 ζ3 ζ31 0 0 2 2ζ31 2ζ3 1 ζ31 ζ3 0 0 0 0 2ζ3 2ζ31 1 1 ζ31 ζ3 ζ3 ζ31
180.21.2c2 C 2 2 2ζ3 2ζ31 1 ζ31 ζ3 0 0 2 2ζ3 2ζ31 1 ζ3 ζ31 0 0 0 0 2ζ31 2ζ3 1 1 ζ3 ζ31 ζ31 ζ3
180.21.2d1 C 2 2 2ζ31 2ζ3 1 ζ3 ζ31 0 0 2 2ζ31 2ζ3 1 ζ31 ζ3 0 0 0 0 2ζ3 2ζ31 1 1 ζ31 ζ3 ζ3 ζ31
180.21.2d2 C 2 2 2ζ3 2ζ31 1 ζ31 ζ3 0 0 2 2ζ3 2ζ31 1 ζ3 ζ31 0 0 0 0 2ζ31 2ζ3 1 1 ζ3 ζ31 ζ31 ζ3
180.21.4a R 4 0 4 4 4 4 4 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
180.21.4b1 C 4 0 4 4 2 2 2 0 0 1 0 0 0 0 0 0 0 0 0 1 1 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157
180.21.4b2 C 4 0 4 4 2 2 2 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157
180.21.4c1 C 4 0 4ζ31 4ζ3 4 4ζ3 4ζ31 0 0 1 0 0 0 0 0 0 0 0 0 ζ3 ζ31 1 1 ζ31 ζ3 ζ3 ζ31
180.21.4c2 C 4 0 4ζ3 4ζ31 4 4ζ31 4ζ3 0 0 1 0 0 0 0 0 0 0 0 0 ζ31 ζ3 1 1 ζ3 ζ31 ζ31 ζ3
180.21.4d1 C 4 0 4ζ155 4ζ155 2 2ζ155 2ζ155 0 0 1 0 0 0 0 0 0 0 0 0 ζ155 ζ155 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 2+ζ15+2ζ1522ζ153+ζ154ζ155+2ζ157 ζ15+ζ152ζ153ζ154+ζ155+ζ157 ζ15ζ152+ζ153+ζ154ζ157 1ζ152ζ152+2ζ153ζ1542ζ157
180.21.4d2 C 4 0 4ζ155 4ζ155 2 2ζ155 2ζ155 0 0 1 0 0 0 0 0 0 0 0 0 ζ155 ζ155 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 ζ15+ζ152ζ153ζ154+ζ155+ζ157 2+ζ15+2ζ1522ζ153+ζ154ζ155+2ζ157 1ζ152ζ152+2ζ153ζ1542ζ157 ζ15ζ152+ζ153+ζ154ζ157
180.21.4d3 C 4 0 4ζ155 4ζ155 2 2ζ155 2ζ155 0 0 1 0 0 0 0 0 0 0 0 0 ζ155 ζ155 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1ζ152ζ152+2ζ153ζ1542ζ157 ζ15ζ152+ζ153+ζ154ζ157 ζ15+ζ152ζ153ζ154+ζ155+ζ157 2+ζ15+2ζ1522ζ153+ζ154ζ155+2ζ157
180.21.4d4 C 4 0 4ζ155 4ζ155 2 2ζ155 2ζ155 0 0 1 0 0 0 0 0 0 0 0 0 ζ155 ζ155 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 ζ15ζ152+ζ153+ζ154ζ157 1ζ152ζ152+2ζ153ζ1542ζ157 2+ζ15+2ζ1522ζ153+ζ154ζ155+2ζ157 ζ15+ζ152ζ153ζ154+ζ155+ζ157

magma: CharacterTable(G);