Show commands:
Magma
magma: G := TransitiveGroup(30, 47);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $47$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_{15}:C_{12}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $3$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,26,11,30,3,25,10,29,2,27,12,28)(4,18,7,22,6,17,9,24,5,16,8,23)(13,19,14,20,15,21), (1,8,15,4,12,2,9,13,5,10,3,7,14,6,11)(16,23,29,21,25,18,22,28,20,27,17,24,30,19,26) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $S_3$, $C_6$ $12$: $C_{12}$, $C_3 : C_4$ $18$: $S_3\times C_3$ $20$: $F_5$ $36$: $C_3\times (C_3 : C_4)$ $60$: $C_{15} : C_4$, $F_5\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 5: $F_5$
Degree 6: $S_3\times C_3$
Degree 10: $F_5$
Degree 15: None
Low degree siblings
45T18Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{6}$ | $5$ | $2$ | $12$ | $( 1,10)( 2,11)( 3,12)( 4, 9)( 5, 7)( 6, 8)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)$ |
3A1 | $3^{10}$ | $1$ | $3$ | $20$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
3A-1 | $3^{10}$ | $1$ | $3$ | $20$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$ |
3B | $3^{5},1^{15}$ | $2$ | $3$ | $10$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)$ |
3C1 | $3^{10}$ | $2$ | $3$ | $20$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$ |
3C-1 | $3^{5},1^{15}$ | $2$ | $3$ | $10$ | $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
4A1 | $4^{6},2^{3}$ | $15$ | $4$ | $21$ | $( 1,28,10,25)( 2,29,11,26)( 3,30,12,27)( 4,23, 9,17)( 5,24, 7,18)( 6,22, 8,16)(13,21)(14,19)(15,20)$ |
4A-1 | $4^{6},2^{3}$ | $15$ | $4$ | $21$ | $( 1,25,10,28)( 2,26,11,29)( 3,27,12,30)( 4,17, 9,23)( 5,18, 7,24)( 6,16, 8,22)(13,21)(14,19)(15,20)$ |
5A | $5^{6}$ | $4$ | $5$ | $24$ | $( 1,14,10, 9, 4)( 2,15,11, 7, 5)( 3,13,12, 8, 6)(16,30,27,22,21)(17,28,25,23,19)(18,29,26,24,20)$ |
6A1 | $6^{4},3^{2}$ | $5$ | $6$ | $24$ | $( 1,11, 3,10, 2,12)( 4, 7, 6, 9, 5, 8)(13,14,15)(16,23,18,22,17,24)(19,20,21)(25,29,27,28,26,30)$ |
6A-1 | $6^{4},3^{2}$ | $5$ | $6$ | $24$ | $( 1,12, 2,10, 3,11)( 4, 8, 5, 9, 6, 7)(13,15,14)(16,24,17,22,18,23)(19,21,20)(25,30,26,28,27,29)$ |
6B | $6^{4},3^{2}$ | $10$ | $6$ | $24$ | $( 1, 2, 3)( 4,15, 6,14, 5,13)( 7,12, 9,11, 8,10)(16,29,17,30,18,28)(19,27,20,25,21,26)(22,24,23)$ |
6C1 | $6^{2},3,2^{6},1^{3}$ | $10$ | $6$ | $18$ | $( 1, 3, 2)( 4,13, 5,14, 6,15)( 7,10, 8,11, 9,12)(16,30)(17,28)(18,29)(19,25)(20,26)(21,27)$ |
6C-1 | $6^{2},3,2^{6},1^{3}$ | $10$ | $6$ | $18$ | $( 4,14)( 5,15)( 6,13)( 7,11)( 8,12)( 9,10)(16,28,18,30,17,29)(19,26,21,25,20,27)(22,23,24)$ |
12A1 | $12^{2},6$ | $15$ | $12$ | $27$ | $( 1,27,11,28, 3,26,10,30, 2,25,12,29)( 4,16, 7,23, 6,18, 9,22, 5,17, 8,24)(13,20,14,21,15,19)$ |
12A-1 | $12^{2},6$ | $15$ | $12$ | $27$ | $( 1,29,12,25, 2,30,10,26, 3,28,11,27)( 4,24, 8,17, 5,22, 9,18, 6,23, 7,16)(13,19,15,21,14,20)$ |
12A5 | $12^{2},6$ | $15$ | $12$ | $27$ | $( 1,26,12,28, 2,27,10,29, 3,25,11,30)( 4,18, 8,23, 5,16, 9,24, 6,17, 7,22)(13,19,15,21,14,20)$ |
12A-5 | $12^{2},6$ | $15$ | $12$ | $27$ | $( 1,30,11,25, 3,29,10,27, 2,28,12,26)( 4,22, 7,17, 6,24, 9,16, 5,23, 8,18)(13,20,14,21,15,19)$ |
15A1 | $15,5^{3}$ | $4$ | $15$ | $26$ | $( 1,12, 5,14, 8, 2,10, 6,15, 9, 3,11, 4,13, 7)(16,27,21,30,22)(17,25,19,28,23)(18,26,20,29,24)$ |
15A-1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,11, 6,14, 7, 3,10, 5,13, 9, 2,12, 4,15, 8)(16,26,19,30,24,17,27,20,28,22,18,25,21,29,23)$ |
15B1 | $15,5^{3}$ | $4$ | $15$ | $26$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,19,24,27,28,18,21,23,26,30,17,20,22,25,29)$ |
15B-1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,15,12, 9, 5, 3,14,11, 8, 4, 2,13,10, 7, 6)(16,28,26,22,19,18,30,25,24,21,17,29,27,23,20)$ |
15C1 | $15,5^{3}$ | $4$ | $15$ | $26$ | $( 1,10, 4,14, 9)( 2,11, 5,15, 7)( 3,12, 6,13, 8)(16,25,20,30,23,18,27,19,29,22,17,26,21,28,24)$ |
15C-1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,20,23,27,29,17,21,24,25,30,18,19,22,26,28)$ |
15C2 | $15,5^{3}$ | $4$ | $15$ | $26$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,21,22,27,30)(17,19,23,25,28)(18,20,24,26,29)$ |
15C-2 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,13,11, 9, 6, 2,14,12, 7, 4, 3,15,10, 8, 5)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 180.21 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 4A1 | 4A-1 | 5A | 6A1 | 6A-1 | 6B | 6C1 | 6C-1 | 12A1 | 12A-1 | 12A5 | 12A-5 | 15A1 | 15A-1 | 15B1 | 15B-1 | 15C1 | 15C-1 | 15C2 | 15C-2 | ||
Size | 1 | 5 | 1 | 1 | 2 | 2 | 2 | 15 | 15 | 4 | 5 | 5 | 10 | 10 | 10 | 15 | 15 | 15 | 15 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3C1 | 3B | 3C-1 | 2A | 2A | 5A | 3A-1 | 3A1 | 3B | 3C1 | 3C-1 | 6A1 | 6A-1 | 6A-1 | 6A1 | 15C1 | 15B1 | 15C-1 | 15A1 | 15C2 | 15B-1 | 15C-2 | 15A-1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 4A-1 | 4A1 | 5A | 2A | 2A | 2A | 2A | 2A | 4A1 | 4A-1 | 4A1 | 4A-1 | 5A | 5A | 5A | 5A | 5A | 5A | 5A | 5A | |
5 P | 1A | 2A | 3A-1 | 3A1 | 3C1 | 3B | 3C-1 | 4A1 | 4A-1 | 1A | 6A-1 | 6A1 | 6B | 6C-1 | 6C1 | 12A5 | 12A-5 | 12A1 | 12A-1 | 3C1 | 3B | 3C-1 | 3A-1 | 3C-1 | 3B | 3C1 | 3A1 | |
Type | ||||||||||||||||||||||||||||
180.21.1a | R | |||||||||||||||||||||||||||
180.21.1b | R | |||||||||||||||||||||||||||
180.21.1c1 | C | |||||||||||||||||||||||||||
180.21.1c2 | C | |||||||||||||||||||||||||||
180.21.1d1 | C | |||||||||||||||||||||||||||
180.21.1d2 | C | |||||||||||||||||||||||||||
180.21.1e1 | C | |||||||||||||||||||||||||||
180.21.1e2 | C | |||||||||||||||||||||||||||
180.21.1f1 | C | |||||||||||||||||||||||||||
180.21.1f2 | C | |||||||||||||||||||||||||||
180.21.1f3 | C | |||||||||||||||||||||||||||
180.21.1f4 | C | |||||||||||||||||||||||||||
180.21.2a | R | |||||||||||||||||||||||||||
180.21.2b | S | |||||||||||||||||||||||||||
180.21.2c1 | C | |||||||||||||||||||||||||||
180.21.2c2 | C | |||||||||||||||||||||||||||
180.21.2d1 | C | |||||||||||||||||||||||||||
180.21.2d2 | C | |||||||||||||||||||||||||||
180.21.4a | R | |||||||||||||||||||||||||||
180.21.4b1 | C | |||||||||||||||||||||||||||
180.21.4b2 | C | |||||||||||||||||||||||||||
180.21.4c1 | C | |||||||||||||||||||||||||||
180.21.4c2 | C | |||||||||||||||||||||||||||
180.21.4d1 | C | |||||||||||||||||||||||||||
180.21.4d2 | C | |||||||||||||||||||||||||||
180.21.4d3 | C | |||||||||||||||||||||||||||
180.21.4d4 | C |
magma: CharacterTable(G);