Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $46$ | |
| Group : | $(C_3\times C_{15}):C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,5,14,8,2,10,6,15,9,3,11,4,13,7)(16,25,20,30,23,18,27,19,29,22,17,26,21,28,24), (1,20,6,28)(2,21,5,30)(3,19,4,29)(7,22,15,27)(8,23,14,26)(9,24,13,25)(10,18,12,17)(11,16) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 20: $F_5$ 36: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 5: $F_5$
Degree 6: $C_3^2:C_4$
Degree 10: $F_5$
Degree 15: None
Low degree siblings
30T46, 45T27Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 2, 3)( 4,14)( 5,13)( 6,15)( 7,12)( 8,11)( 9,10)(16,28)(17,30)(18,29)(19,27) (20,26)(21,25)(22,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)(28,29,30)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,19,24,27,28,18,21,23,26, 30,17,20,22,25,29)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,20,23,27,29,17,21,24,25, 30,18,19,22,26,28)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,21,22,27,30) (17,19,23,25,28)(18,20,24,26,29)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,19,24,27,28,18,21,23,26,30, 17,20,22,25,29)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,20,23,27,29,17,21,24,25,30, 18,19,22,26,28)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,21,22,27,30)(17,19,23,25,28) (18,20,24,26,29)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,19,24,27,28,18,21,23,26,30, 17,20,22,25,29)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,20,23,27,29,17,21,24,25,30, 18,19,22,26,28)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,21,22,27,30)(17,19,23,25,28) (18,20,24,26,29)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 2 $ | $45$ | $4$ | $( 1,16, 7,19)( 2,17, 9,21)( 3,18, 8,20)( 4,27, 5,25)( 6,26)(10,30,15,23) (11,28,14,22)(12,29,13,24)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 2 $ | $45$ | $4$ | $( 1,16,13,25)( 2,18,15,26)( 3,17,14,27)( 4,22,12,19)( 5,24,11,20)( 6,23,10,21) ( 7,29)( 8,28, 9,30)$ |
Group invariants
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [180, 25] |
| Character table: |
2 2 . 2 . . . . . . . . . . 2 2
3 2 2 . 2 2 2 2 2 2 2 2 2 2 . .
5 1 1 . 1 1 1 1 1 1 1 1 1 1 . .
1a 3a 2a 3b 15a 15b 5a 15c 15d 15e 15f 15g 15h 4a 4b
2P 1a 3a 1a 3b 15e 15h 5a 15d 15g 15b 15c 15f 15a 2a 2a
3P 1a 1a 2a 1a 5a 5a 5a 5a 5a 5a 5a 5a 5a 4b 4a
5P 1a 3a 2a 3b 3a 3a 1a 3b 3b 3a 3b 3b 3a 4a 4b
7P 1a 3a 2a 3b 15h 15e 5a 15f 15c 15a 15g 15d 15b 4b 4a
11P 1a 3a 2a 3b 15b 15a 5a 15g 15f 15h 15d 15c 15e 4b 4a
13P 1a 3a 2a 3b 15e 15h 5a 15d 15g 15b 15c 15f 15a 4a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1
X.3 1 1 -1 1 1 1 1 1 1 1 1 1 1 I -I
X.4 1 1 -1 1 1 1 1 1 1 1 1 1 1 -I I
X.5 4 4 . 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 . .
X.6 4 1 . -2 1 1 4 -2 -2 1 -2 -2 1 . .
X.7 4 -2 . 1 -2 -2 4 1 1 -2 1 1 -2 . .
X.8 4 1 . -2 A D -1 F G B E H C . .
X.9 4 1 . -2 B C -1 G H D F E A . .
X.10 4 1 . -2 C B -1 E F A H G D . .
X.11 4 1 . -2 D A -1 H E C G F B . .
X.12 4 -2 . 1 E G -1 D C F B A H . .
X.13 4 -2 . 1 F H -1 C A G D B E . .
X.14 4 -2 . 1 G E -1 A B H C D F . .
X.15 4 -2 . 1 H F -1 B D E A C G . .
A = -E(15)+E(15)^2-E(15)^4-E(15)^11+E(15)^13-E(15)^14
B = -E(15)^2+E(15)^4-E(15)^7-E(15)^8+E(15)^11-E(15)^13
C = E(15)-E(15)^2-E(15)^7-E(15)^8-E(15)^13+E(15)^14
D = -E(15)-E(15)^4+E(15)^7+E(15)^8-E(15)^11-E(15)^14
E = E(15)+E(15)^2+E(15)^13+E(15)^14
F = E(15)^2+E(15)^4+E(15)^11+E(15)^13
G = E(15)^4+E(15)^7+E(15)^8+E(15)^11
H = E(15)+E(15)^7+E(15)^8+E(15)^14
I = -E(4)
= -Sqrt(-1) = -i
|