Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $45$ | |
| Group : | $C_3\times A_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,9)(3,7)(10,29)(11,30)(12,28)(13,25)(14,26)(15,27)(16,24)(17,22)(18,23), (1,7,15,30,18,2,8,13,28,16,3,9,14,29,17)(4,25,22,20,10,5,26,23,21,11,6,27,24,19,12) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 60: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 5: None
Degree 6: None
Degree 10: $A_{5}$
Degree 15: None
Low degree siblings
15T15 x 2, 15T16, 18T90, 36T176, 45T16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 4,11,14)( 5,12,15)( 6,10,13)( 7,18,25)( 8,16,26)( 9,17,27)(19,23,29) (20,24,30)(21,22,28)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 4,20)( 5,21)( 6,19)(10,29)(11,30)(12,28)(13,23)(14,24)(15,22)(16,26)(17,27) (18,25)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)(28,29,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 2, 3)( 4,12,13)( 5,10,14)( 6,11,15)( 7,16,27)( 8,17,25)( 9,18,26) (19,24,28)(20,22,29)(21,23,30)$ |
| $ 6, 6, 6, 6, 3, 3 $ | $15$ | $6$ | $( 1, 2, 3)( 4,21, 6,20, 5,19)( 7, 8, 9)(10,30,12,29,11,28)(13,24,15,23,14,22) (16,27,18,26,17,25)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20) (22,24,23)(25,27,26)(28,30,29)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 3, 2)( 4,10,15)( 5,11,13)( 6,12,14)( 7,17,26)( 8,18,27)( 9,16,25) (19,22,30)(20,23,28)(21,24,29)$ |
| $ 6, 6, 6, 6, 3, 3 $ | $15$ | $6$ | $( 1, 3, 2)( 4,19, 5,20, 6,21)( 7, 9, 8)(10,28,11,29,12,30)(13,22,14,23,15,24) (16,25,17,26,18,27)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 4, 8,16,24)( 2, 5, 9,17,22)( 3, 6, 7,18,23)(10,25,19,13,29) (11,26,20,14,30)(12,27,21,15,28)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 4,26,16,20)( 2, 5,27,17,21)( 3, 6,25,18,19)( 7,23,10,29,13) ( 8,24,11,30,14)( 9,22,12,28,15)$ |
| $ 15, 15 $ | $12$ | $15$ | $( 1, 5, 7,16,22, 3, 4, 9,18,24, 2, 6, 8,17,23)(10,26,21,13,30,12,25,20,15,29, 11,27,19,14,28)$ |
| $ 15, 15 $ | $12$ | $15$ | $( 1, 5,25,16,21, 3, 4,27,18,20, 2, 6,26,17,19)( 7,24,12,29,14, 9,23,11,28,13, 8,22,10,30,15)$ |
| $ 15, 15 $ | $12$ | $15$ | $( 1, 6, 9,16,23, 2, 4, 7,17,24, 3, 5, 8,18,22)(10,27,20,13,28,11,25,21,14,29, 12,26,19,15,30)$ |
| $ 15, 15 $ | $12$ | $15$ | $( 1, 6,27,16,19, 2, 4,25,17,20, 3, 5,26,18,21)( 7,22,11,29,15, 8,23,12,30,13, 9,24,10,28,14)$ |
Group invariants
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [180, 19] |
| Character table: |
2 2 . 2 2 . 2 2 . 2 . . . . . .
3 2 2 1 2 2 1 2 2 1 1 1 1 1 1 1
5 1 . . 1 . . 1 . . 1 1 1 1 1 1
1a 3a 2a 3b 3c 6a 3d 3e 6b 5a 5b 15a 15b 15c 15d
2P 1a 3a 1a 3d 3e 3d 3b 3c 3b 5b 5a 15d 15c 15b 15a
3P 1a 1a 2a 1a 1a 2a 1a 1a 2a 5b 5a 5b 5a 5b 5a
5P 1a 3a 2a 3d 3e 6b 3b 3c 6a 1a 1a 3d 3d 3b 3b
7P 1a 3a 2a 3b 3c 6a 3d 3e 6b 5b 5a 15b 15a 15d 15c
11P 1a 3a 2a 3d 3e 6b 3b 3c 6a 5a 5b 15c 15d 15a 15b
13P 1a 3a 2a 3b 3c 6a 3d 3e 6b 5b 5a 15b 15a 15d 15c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 A A A /A /A /A 1 1 A A /A /A
X.3 1 1 1 /A /A /A A A A 1 1 /A /A A A
X.4 3 . -1 3 . -1 3 . -1 E *E E *E E *E
X.5 3 . -1 3 . -1 3 . -1 *E E *E E *E E
X.6 3 . -1 B . -A /B . -/A E *E F G /F /G
X.7 3 . -1 B . -A /B . -/A *E E G F /G /F
X.8 3 . -1 /B . -/A B . -A E *E /F /G F G
X.9 3 . -1 /B . -/A B . -A *E E /G /F G F
X.10 4 1 . 4 1 . 4 1 . -1 -1 -1 -1 -1 -1
X.11 4 1 . C A . /C /A . -1 -1 -A -A -/A -/A
X.12 4 1 . /C /A . C A . -1 -1 -/A -/A -A -A
X.13 5 -1 1 5 -1 1 5 -1 1 . . . . . .
X.14 5 -1 1 D -A A /D -/A /A . . . . . .
X.15 5 -1 1 /D -/A /A D -A A . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
C = 4*E(3)^2
= -2-2*Sqrt(-3) = -2-2i3
D = 5*E(3)^2
= (-5-5*Sqrt(-3))/2 = -5-5b3
E = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
F = -E(15)^7-E(15)^13
G = -E(15)-E(15)^4
|