Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $43$ | |
| Group : | $D_{15}:S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,30)(2,28)(3,29)(4,27)(5,25)(6,26)(7,24)(8,22)(9,23)(10,21)(11,19)(12,20)(13,18)(14,16)(15,17), (1,13,10,7,4)(2,15,11,9,5,3,14,12,8,6)(16,28,25,22,19)(17,30,26,24,20,18,29,27,23,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15) | |
| $|\Aut(F/K)|$: | $5$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 10: $D_{5}$ 12: $D_{6}$ x 2 20: $D_{10}$ 36: $S_3^2$ 60: $D_5\times S_3$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 5: $D_{5}$
Degree 6: $S_3^2$
Degree 10: $D_5$
Degree 15: None
Low degree siblings
45T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)(28,29,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,18,17)(19,21,20) (22,24,23)(25,27,26)(28,30,29)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)(16,19,22,25,28) (17,20,23,26,29)(18,21,24,27,30)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)(16,20,24,25,29,18,19,23,27, 28,17,21,22,26,30)$ |
| $ 10, 10, 5, 5 $ | $18$ | $10$ | $( 1, 4, 7,10,13)( 2, 6, 8,12,14, 3, 5, 9,11,15)(16,19,22,25,28) (17,21,23,27,29,18,20,24,26,30)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 5, 9,10,14, 3, 4, 8,12,13, 2, 6, 7,11,15)(16,19,22,25,28)(17,20,23,26,29) (18,21,24,27,30)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 5, 9,10,14, 3, 4, 8,12,13, 2, 6, 7,11,15)(16,20,24,25,29,18,19,23,27,28, 17,21,22,26,30)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 5, 9,10,14, 3, 4, 8,12,13, 2, 6, 7,11,15)(16,21,23,25,30,17,19,24,26,28, 18,20,22,27,29)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)(16,22,28,19,25) (17,23,29,20,26)(18,24,30,21,27)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)(16,23,30,19,26,18,22,29,21, 25,17,24,28,20,27)$ |
| $ 10, 10, 5, 5 $ | $18$ | $10$ | $( 1, 7,13, 4,10)( 2, 9,14, 6,11, 3, 8,15, 5,12)(16,22,28,19,25) (17,24,29,21,26,18,23,30,20,27)$ |
| $ 15, 5, 5, 5 $ | $4$ | $15$ | $( 1, 8,15, 4,11, 3, 7,14, 6,10, 2, 9,13, 5,12)(16,22,28,19,25)(17,23,29,20,26) (18,24,30,21,27)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 8,15, 4,11, 3, 7,14, 6,10, 2, 9,13, 5,12)(16,23,30,19,26,18,22,29,21,25, 17,24,28,20,27)$ |
| $ 15, 15 $ | $4$ | $15$ | $( 1, 8,15, 4,11, 3, 7,14, 6,10, 2, 9,13, 5,12)(16,24,29,19,27,17,22,30,20,25, 18,23,28,21,26)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1,16)( 2,17)( 3,18)( 4,28)( 5,29)( 6,30)( 7,25)( 8,26)( 9,27)(10,22)(11,23) (12,24)(13,19)(14,20)(15,21)$ |
| $ 6, 6, 6, 6, 6 $ | $30$ | $6$ | $( 1,16, 2,17, 3,18)( 4,28, 5,29, 6,30)( 7,25, 8,26, 9,27)(10,22,11,23,12,24) (13,19,14,20,15,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1,16)( 2,18)( 3,17)( 4,28)( 5,30)( 6,29)( 7,25)( 8,27)( 9,26)(10,22)(11,24) (12,23)(13,19)(14,21)(15,20)$ |
| $ 6, 6, 6, 6, 6 $ | $30$ | $6$ | $( 1,16, 2,18, 3,17)( 4,28, 5,30, 6,29)( 7,25, 8,27, 9,26)(10,22,11,24,12,23) (13,19,14,21,15,20)$ |
Group invariants
| Order: | $180=2^{2} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [180, 30] |
| Character table: Data not available. |