Show commands:
Magma
magma: G := TransitiveGroup(30, 38);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $38$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5^2:S_3$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $10$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,12,22)(2,11,21)(3,13,24)(4,14,23)(5,15,26)(6,16,25)(7,18,27)(8,17,28)(9,20,30)(10,19,29), (1,27,8,3,14,10,20,15,25,21)(2,28,7,4,13,9,19,16,26,22)(5,30,24,17,11,6,29,23,18,12) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: None
Degree 6: $S_3$
Degree 10: None
Degree 15: $(C_5^2 : C_3):C_2$
Low degree siblings
15T13, 15T14, 25T16, 30T37Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{15}$ | $15$ | $2$ | $15$ | $( 1,21)( 2,22)( 3,14)( 4,13)( 5, 6)( 7,28)( 8,27)( 9,19)(10,20)(11,12)(15,25)(16,26)(17,18)(23,24)(29,30)$ |
3A | $3^{10}$ | $50$ | $3$ | $20$ | $( 1,12,22)( 2,11,21)( 3,13,24)( 4,14,23)( 5,15,26)( 6,16,25)( 7,18,27)( 8,17,28)( 9,20,30)(10,19,29)$ |
5A1 | $5^{6}$ | $3$ | $5$ | $24$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,15,27,10,21)( 4,16,28, 9,22)( 5,18,29,11,24)( 6,17,30,12,23)$ |
5A-1 | $5^{6}$ | $3$ | $5$ | $24$ | $( 1,14,25, 8,20)( 2,13,26, 7,19)( 3,27,21,15,10)( 4,28,22,16, 9)( 5,29,24,18,11)( 6,30,23,17,12)$ |
5A2 | $5^{6}$ | $3$ | $5$ | $24$ | $( 1,25,20,14, 8)( 2,26,19,13, 7)( 3,21,10,27,15)( 4,22, 9,28,16)( 5,24,11,29,18)( 6,23,12,30,17)$ |
5A-2 | $5^{6}$ | $3$ | $5$ | $24$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,10,15,21,27)( 4, 9,16,22,28)( 5,11,18,24,29)( 6,12,17,23,30)$ |
5B1 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,15,27,10,21)( 4,16,28, 9,22)$ |
5B2 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 3,10,15,21,27)( 4, 9,16,22,28)( 5,29,24,18,11)( 6,30,23,17,12)$ |
10A1 | $10^{3}$ | $15$ | $10$ | $27$ | $( 1,21, 8,27,14, 3,20,10,25,15)( 2,22, 7,28,13, 4,19, 9,26,16)( 5,30,24,17,11, 6,29,23,18,12)$ |
10A-1 | $10^{3}$ | $15$ | $10$ | $27$ | $( 1,21,25,15,20,10,14, 3, 8,27)( 2,22,26,16,19, 9,13, 4, 7,28)( 5,12,18,23,29, 6,11,17,24,30)$ |
10A3 | $10^{3}$ | $15$ | $10$ | $27$ | $( 1,21,20,10, 8,27,25,15,14, 3)( 2,22,19, 9, 7,28,26,16,13, 4)( 5,17,29,12,24, 6,18,30,11,23)$ |
10A-3 | $10^{3}$ | $15$ | $10$ | $27$ | $( 1,21,14, 3,25,15, 8,27,20,10)( 2,22,13, 4,26,16, 7,28,19, 9)( 5,23,11,30,18, 6,24,12,29,17)$ |
Malle's constant $a(G)$: $1/15$
magma: ConjugacyClasses(G);
Group invariants
Order: | $150=2 \cdot 3 \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 150.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 5A1 | 5A-1 | 5A2 | 5A-2 | 5B1 | 5B2 | 10A1 | 10A-1 | 10A3 | 10A-3 | ||
Size | 1 | 15 | 50 | 3 | 3 | 3 | 3 | 6 | 6 | 15 | 15 | 15 | 15 | |
2 P | 1A | 1A | 3A | 5A-1 | 5A-2 | 5A1 | 5A2 | 5B2 | 5B1 | 5A1 | 5A-1 | 5A-2 | 5A2 | |
3 P | 1A | 2A | 1A | 5A1 | 5A2 | 5A-1 | 5A-2 | 5B2 | 5B1 | 10A3 | 10A-3 | 10A-1 | 10A1 | |
5 P | 1A | 2A | 3A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | |
Type | ||||||||||||||
150.5.1a | R | |||||||||||||
150.5.1b | R | |||||||||||||
150.5.2a | R | |||||||||||||
150.5.3a1 | C | |||||||||||||
150.5.3a2 | C | |||||||||||||
150.5.3a3 | C | |||||||||||||
150.5.3a4 | C | |||||||||||||
150.5.3b1 | C | |||||||||||||
150.5.3b2 | C | |||||||||||||
150.5.3b3 | C | |||||||||||||
150.5.3b4 | C | |||||||||||||
150.5.6a1 | R | |||||||||||||
150.5.6a2 | R |
magma: CharacterTable(G);