Show commands:
Magma
magma: G := TransitiveGroup(30, 38);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $38$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5^2:S_3$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $10$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,12,22)(2,11,21)(3,13,24)(4,14,23)(5,15,26)(6,16,25)(7,18,27)(8,17,28)(9,20,30)(10,19,29), (1,27,8,3,14,10,20,15,25,21)(2,28,7,4,13,9,19,16,26,22)(5,30,24,17,11,6,29,23,18,12) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: None
Degree 6: $S_3$
Degree 10: None
Degree 15: $(C_5^2 : C_3):C_2$
Low degree siblings
15T13, 15T14, 25T16, 30T37Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3,10,15,21,27)( 4, 9,16,22,28)( 5,29,24,18,11)( 6,30,23,17,12)$ |
$ 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3,15,27,10,21)( 4,16,28, 9,22)( 5,24,11,29,18)( 6,23,12,30,17)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7, 8)( 9,11)(10,12)(13,14)(15,17)(16,18)(19,20)(21,23) (22,24)(25,26)(27,30)(28,29)$ |
$ 10, 10, 10 $ | $15$ | $10$ | $( 1, 3, 8,10,14,15,20,21,25,27)( 2, 4, 7, 9,13,16,19,22,26,28)( 5,30,24,17,11, 6,29,23,18,12)$ |
$ 10, 10, 10 $ | $15$ | $10$ | $( 1, 3,14,15,25,27, 8,10,20,21)( 2, 4,13,16,26,28, 7, 9,19,22)( 5,23,11,30,18, 6,24,12,29,17)$ |
$ 10, 10, 10 $ | $15$ | $10$ | $( 1, 3,20,21, 8,10,25,27,14,15)( 2, 4,19,22, 7, 9,26,28,13,16)( 5,17,29,12,24, 6,18,30,11,23)$ |
$ 10, 10, 10 $ | $15$ | $10$ | $( 1, 3,25,27,20,21,14,15, 8,10)( 2, 4,26,28,19,22,13,16, 7, 9)( 5,12,18,23,29, 6,11,17,24,30)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $50$ | $3$ | $( 1, 4, 6)( 2, 3, 5)( 7,10,11)( 8, 9,12)(13,15,18)(14,16,17)(19,21,24) (20,22,23)(25,28,30)(26,27,29)$ |
$ 5, 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,10,15,21,27)( 4, 9,16,22,28) ( 5,24,11,29,18)( 6,23,12,30,17)$ |
$ 5, 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,15,27,10,21)( 4,16,28, 9,22) ( 5,18,29,11,24)( 6,17,30,12,23)$ |
$ 5, 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1,14,25, 8,20)( 2,13,26, 7,19)( 3,27,21,15,10)( 4,28,22,16, 9) ( 5,29,24,18,11)( 6,30,23,17,12)$ |
$ 5, 5, 5, 5, 5, 5 $ | $3$ | $5$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,21,10,27,15)( 4,22, 9,28,16) ( 5,29,24,18,11)( 6,30,23,17,12)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $150=2 \cdot 3 \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 150.5 | magma: IdentifyGroup(G);
|
Character table: |
2 1 . . 1 1 1 1 1 . 1 1 1 1 3 1 . . . . . . . 1 . . . . 5 2 2 2 1 1 1 1 1 . 2 2 2 2 1a 5a 5b 2a 10a 10b 10c 10d 3a 5c 5d 5e 5f 2P 1a 5b 5a 1a 5c 5d 5f 5e 3a 5d 5e 5f 5c 3P 1a 5b 5a 2a 10c 10a 10d 10b 1a 5f 5c 5d 5e 5P 1a 1a 1a 2a 2a 2a 2a 2a 3a 1a 1a 1a 1a 7P 1a 5b 5a 2a 10b 10d 10a 10c 3a 5d 5e 5f 5c X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 X.3 2 2 2 . . . . . -1 2 2 2 2 X.4 3 A *A -1 C /D D /C . E /F /E F X.5 3 A *A -1 /C D /D C . /E F E /F X.6 3 *A A -1 D C /C /D . F E /F /E X.7 3 *A A -1 /D /C C D . /F /E F E X.8 3 A *A 1 -/C -D -/D -C . /E F E /F X.9 3 A *A 1 -C -/D -D -/C . E /F /E F X.10 3 *A A 1 -/D -/C -C -D . /F /E F E X.11 3 *A A 1 -D -C -/C -/D . F E /F /E X.12 6 B *B . . . . . . G *G G *G X.13 6 *B B . . . . . . *G G *G G A = -E(5)-E(5)^4 = (1-Sqrt(5))/2 = -b5 B = 2*E(5)+E(5)^2+E(5)^3+2*E(5)^4 = (-3+Sqrt(5))/2 = -1+b5 C = -E(5)^2 D = -E(5) E = 2*E(5)^3+E(5)^4 F = E(5)^2+2*E(5)^4 G = -2*E(5)-2*E(5)^4 = 1-Sqrt(5) = 1-r5 |
magma: CharacterTable(G);