Group action invariants
Degree $n$: | $30$ | |
Transitive number $t$: | $29$ | |
Group: | $C_2\times A_5$ | |
Parity: | $-1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $2$ | |
Generators: | (1,16,11,2,15,12)(3,25,30,4,26,29)(5,13,21,6,14,22)(7,27,9,8,28,10)(17,24,19,18,23,20), (1,19,28,18,5,2,20,27,17,6)(3,13,12,30,24,4,14,11,29,23)(7,22,15,10,25,8,21,16,9,26) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $60$: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: $A_5$
Degree 6: None
Degree 10: None
Degree 15: $A_5$
Low degree siblings
10T11, 12T75, 12T76, 20T31, 20T36, 24T203, 30T30, 40T61Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3,10)( 4, 9)( 5,26)( 6,25)( 7,19)( 8,20)(13,27)(14,28)(15,16)(17,30)(18,29) (21,24)(22,23)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 3,22)( 4,21)( 5, 8)( 6, 7)( 9,24)(10,23)(11,12)(13,18)(14,17)(15,16)(19,25) (20,26)(27,29)(28,30)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)$ |
$ 10, 10, 10 $ | $12$ | $10$ | $( 1, 3,14,27, 9, 2, 4,13,28,10)( 5,26,30,15,18, 6,25,29,16,17)( 7,22,24,20,11, 8,21,23,19,12)$ |
$ 5, 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 3,19,25,22)( 2, 4,20,26,21)( 5,11, 7,29,28)( 6,12, 8,30,27) ( 9,23,14,15,18)(10,24,13,16,17)$ |
$ 6, 6, 6, 6, 6 $ | $20$ | $6$ | $( 1, 3,24, 2, 4,23)( 5,21,13, 6,22,14)( 7,25,12, 8,26,11)( 9,20,30,10,19,29) (15,17,27,16,18,28)$ |
$ 5, 5, 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 4,14,28, 9)( 2, 3,13,27,10)( 5,25,30,16,18)( 6,26,29,15,17) ( 7,21,24,19,11)( 8,22,23,20,12)$ |
$ 10, 10, 10 $ | $12$ | $10$ | $( 1, 4,19,26,22, 2, 3,20,25,21)( 5,12, 7,30,28, 6,11, 8,29,27)( 9,24,14,16,18, 10,23,13,15,17)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 4,24)( 2, 3,23)( 5,22,13)( 6,21,14)( 7,26,12)( 8,25,11)( 9,19,30) (10,20,29)(15,18,27)(16,17,28)$ |
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | no | |
GAP id: | [120, 35] |
Character table: |
2 3 3 3 3 1 1 1 1 1 1 3 1 . . 1 . . 1 . . 1 5 1 . . 1 1 1 . 1 1 . 1a 2a 2b 2c 10a 5a 6a 5b 10b 3a 2P 1a 1a 1a 1a 5a 5b 3a 5a 5b 3a 3P 1a 2a 2b 2c 10b 5b 2c 5a 10a 1a 5P 1a 2a 2b 2c 2c 1a 6a 1a 2c 3a 7P 1a 2a 2b 2c 10b 5b 6a 5a 10a 3a X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 -1 1 -1 1 -1 1 X.3 3 -1 -1 3 A *A . A *A . X.4 3 -1 -1 3 *A A . *A A . X.5 3 1 -1 -3 -*A A . *A -A . X.6 3 1 -1 -3 -A *A . A -*A . X.7 4 . . 4 -1 -1 1 -1 -1 1 X.8 4 . . -4 1 -1 -1 -1 1 1 X.9 5 1 1 5 . . -1 . . -1 X.10 5 -1 1 -5 . . 1 . . -1 A = -E(5)-E(5)^4 = (1-Sqrt(5))/2 = -b5 |