Show commands:
Magma
magma: G := TransitiveGroup(30, 28);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $28$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_5\times A_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,13,27)(2,14,28)(3,11,30,9,15,25)(4,12,29,10,16,26)(5,19,21,7,17,24)(6,20,22,8,18,23), (1,6,9,4,7,2,5,10,3,8)(11,16,19,14,17,12,15,20,13,18)(21,25,30,24,27)(22,26,29,23,28) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $10$: $D_{5}$ $12$: $A_4$ $24$: $A_4\times C_2$ $30$: $D_5\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 5: $D_{5}$
Degree 6: $A_4$
Degree 10: None
Degree 15: $D_5\times C_3$
Low degree siblings
20T37, 30T20, 40T65Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)(11,15)(12,16)(17,19)(18,20)(21,24)(22,23)(25,30) (26,29)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)(11,16)(12,15)(13,14)(17,20)(18,19)(21,23)(22,24) (25,29)(26,30)(27,28)$ |
$ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)(11,13,15,17,19)(12,14,16,18,20) (21,24,25,27,30)(22,23,26,28,29)$ |
$ 10, 10, 5, 5 $ | $6$ | $10$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)(11,14,15,18,19,12,13,16,17,20) (21,23,25,28,30,22,24,26,27,29)$ |
$ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)(11,15,19,13,17)(12,16,20,14,18) (21,25,30,24,27)(22,26,29,23,28)$ |
$ 10, 10, 5, 5 $ | $6$ | $10$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)(11,16,19,14,17,12,15,20,13,18) (21,26,30,23,27,22,25,29,24,28)$ |
$ 15, 15 $ | $8$ | $15$ | $( 1,11,23, 5,15,28, 9,19,22, 3,13,26, 7,17,29)( 2,12,24, 6,16,27,10,20,21, 4, 14,25, 8,18,30)$ |
$ 6, 6, 6, 6, 3, 3 $ | $20$ | $6$ | $( 1,11,27, 9,13,25)( 2,12,28,10,14,26)( 3,19,30, 7,15,24)( 4,20,29, 8,16,23) ( 5,17,21)( 6,18,22)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,13,27)( 2,14,28)( 3,15,30)( 4,16,29)( 5,17,21)( 6,18,22)( 7,19,24) ( 8,20,23)( 9,11,25)(10,12,26)$ |
$ 15, 15 $ | $8$ | $15$ | $( 1,17,26, 3,19,28, 5,11,29, 7,13,22, 9,15,23)( 2,18,25, 4,20,27, 6,12,30, 8, 14,21,10,16,24)$ |
$ 15, 15 $ | $8$ | $15$ | $( 1,21,11, 3,24,13, 5,25,15, 7,27,17, 9,30,19)( 2,22,12, 4,23,14, 6,26,16, 8, 28,18,10,29,20)$ |
$ 6, 6, 6, 6, 3, 3 $ | $20$ | $6$ | $( 1,21,13, 5,27,17)( 2,22,14, 6,28,18)( 3,30,15)( 4,29,16)( 7,25,19, 9,24,11) ( 8,26,20,10,23,12)$ |
$ 15, 15 $ | $8$ | $15$ | $( 1,25,19, 5,30,13, 9,24,17, 3,27,11, 7,21,15)( 2,26,20, 6,29,14,10,23,18, 4, 28,12, 8,22,16)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,27,13)( 2,28,14)( 3,30,15)( 4,29,16)( 5,21,17)( 6,22,18)( 7,24,19) ( 8,23,20)( 9,25,11)(10,26,12)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 120.39 | magma: IdentifyGroup(G);
|
Character table: |
2 3 3 3 3 2 2 2 2 . 1 1 . . 1 . 1 3 1 . 1 . 1 . 1 . 1 1 1 1 1 1 1 1 5 1 1 . . 1 1 1 1 1 . 1 1 1 . 1 1 1a 2a 2b 2c 5a 10a 5b 10b 15a 6a 3a 15b 15c 6b 15d 3b 2P 1a 1a 1a 1a 5b 5b 5a 5a 15c 3b 3b 15d 15a 3a 15b 3a 3P 1a 2a 2b 2c 5b 10b 5a 10a 5b 2b 1a 5a 5a 2b 5b 1a 5P 1a 2a 2b 2c 1a 2a 1a 2a 3b 6b 3b 3b 3a 6a 3a 3a 7P 1a 2a 2b 2c 5b 10b 5a 10a 15b 6a 3a 15a 15d 6b 15c 3b 11P 1a 2a 2b 2c 5a 10a 5b 10b 15d 6b 3b 15c 15b 6a 15a 3a 13P 1a 2a 2b 2c 5b 10b 5a 10a 15b 6a 3a 15a 15d 6b 15c 3b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 -1 -1 1 1 1 1 1 -1 1 1 1 -1 1 1 X.3 1 1 -1 -1 1 1 1 1 C -C C C /C -/C /C /C X.4 1 1 -1 -1 1 1 1 1 /C -/C /C /C C -C C C X.5 1 1 1 1 1 1 1 1 C C C C /C /C /C /C X.6 1 1 1 1 1 1 1 1 /C /C /C /C C C C C X.7 2 2 . . A A *A *A A . 2 *A *A . A 2 X.8 2 2 . . *A *A A A *A . 2 A A . *A 2 X.9 2 2 . . A A *A *A D . F E /E . /D /F X.10 2 2 . . A A *A *A /D . /F /E E . D F X.11 2 2 . . *A *A A A E . F D /D . /E /F X.12 2 2 . . *A *A A A /E . /F /D D . E F X.13 3 -1 -3 1 3 -1 3 -1 . . . . . . . . X.14 3 -1 3 -1 3 -1 3 -1 . . . . . . . . X.15 6 -2 . . B -A *B -*A . . . . . . . . X.16 6 -2 . . *B -*A B -A . . . . . . . . A = E(5)+E(5)^4 = (-1+Sqrt(5))/2 = b5 B = 3*E(5)+3*E(5)^4 = (-3+3*Sqrt(5))/2 = 3b5 C = E(3)^2 = (-1-Sqrt(-3))/2 = -1-b3 D = E(15)^7+E(15)^13 E = E(15)+E(15)^4 F = 2*E(3)^2 = -1-Sqrt(-3) = -1-i3 |
magma: CharacterTable(G);