Properties

Label 30T22
Degree $30$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $S_5$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(30, 22);
 

Group action invariants

Degree $n$:  $30$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $22$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $S_5$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,7,5,2,8,6)(3,9,11,17,21,20)(4,10,12,18,22,19)(13,26,23,30,27,16)(14,25,24,29,28,15), (1,29,26,4)(2,30,25,3)(5,22,23,14)(6,21,24,13)(7,27,12,16)(8,28,11,15)(9,17,10,18)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 5: $S_5$

Degree 6: $\PGL(2,5)$

Degree 10: None

Degree 15: $S_5$

Low degree siblings

5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T25, 30T27, 40T62

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{15}$ $10$ $2$ $15$ $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,26)( 6,25)( 7,14)( 8,13)(15,20)(16,19)(17,24)(18,23)(21,22)(27,28)(29,30)$
2B $2^{14},1^{2}$ $15$ $2$ $14$ $( 1, 4)( 2, 3)( 5, 6)( 7,18)( 8,17)( 9,13)(10,14)(11,23)(12,24)(15,21)(16,22)(19,30)(20,29)(27,28)$
3A $3^{10}$ $20$ $3$ $20$ $( 1,18,25)( 2,17,26)( 3,12,21)( 4,11,22)( 5,24,10)( 6,23, 9)( 7,30,13)( 8,29,14)(15,19,28)(16,20,27)$
4A $4^{7},1^{2}$ $30$ $4$ $21$ $( 1,20, 4,29)( 2,19, 3,30)( 5,27, 6,28)( 7,15,18,21)( 8,16,17,22)( 9,11,13,23)(10,12,14,24)$
5A $5^{6}$ $24$ $5$ $24$ $( 1,17,13,28,12)( 2,18,14,27,11)( 3,15,20, 8, 6)( 4,16,19, 7, 5)( 9,29,25,21,23)(10,30,26,22,24)$
6A $6^{5}$ $20$ $6$ $25$ $( 1,19,23, 9,16,18)( 2,20,24,10,15,17)( 3, 5, 8,11,26,13)( 4, 6, 7,12,25,14)(21,28,30,22,27,29)$

Malle's constant $a(G)$:     $1/14$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $120=2^{3} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  120.34
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 3A 4A 5A 6A
Size 1 10 15 20 30 24 20
2 P 1A 1A 1A 3A 2B 5A 3A
3 P 1A 2A 2B 1A 4A 5A 2A
5 P 1A 2A 2B 3A 4A 1A 6A
Type
120.34.1a R 1 1 1 1 1 1 1
120.34.1b R 1 1 1 1 1 1 1
120.34.4a R 4 2 0 1 0 1 1
120.34.4b R 4 2 0 1 0 1 1
120.34.5a R 5 1 1 1 1 0 1
120.34.5b R 5 1 1 1 1 0 1
120.34.6a R 6 0 2 0 0 1 0

magma: CharacterTable(G);