Show commands:
Magma
magma: G := TransitiveGroup(30, 22);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $22$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7,5,2,8,6)(3,9,11,17,21,20)(4,10,12,18,22,19)(13,26,23,30,27,16)(14,25,24,29,28,15), (1,29,26,4)(2,30,25,3)(5,22,23,14)(6,21,24,13)(7,27,12,16)(8,28,11,15)(9,17,10,18) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: $S_5$
Degree 6: $\PGL(2,5)$
Degree 10: None
Degree 15: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{15}$ | $10$ | $2$ | $15$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,26)( 6,25)( 7,14)( 8,13)(15,20)(16,19)(17,24)(18,23)(21,22)(27,28)(29,30)$ |
2B | $2^{14},1^{2}$ | $15$ | $2$ | $14$ | $( 1, 4)( 2, 3)( 5, 6)( 7,18)( 8,17)( 9,13)(10,14)(11,23)(12,24)(15,21)(16,22)(19,30)(20,29)(27,28)$ |
3A | $3^{10}$ | $20$ | $3$ | $20$ | $( 1,18,25)( 2,17,26)( 3,12,21)( 4,11,22)( 5,24,10)( 6,23, 9)( 7,30,13)( 8,29,14)(15,19,28)(16,20,27)$ |
4A | $4^{7},1^{2}$ | $30$ | $4$ | $21$ | $( 1,20, 4,29)( 2,19, 3,30)( 5,27, 6,28)( 7,15,18,21)( 8,16,17,22)( 9,11,13,23)(10,12,14,24)$ |
5A | $5^{6}$ | $24$ | $5$ | $24$ | $( 1,17,13,28,12)( 2,18,14,27,11)( 3,15,20, 8, 6)( 4,16,19, 7, 5)( 9,29,25,21,23)(10,30,26,22,24)$ |
6A | $6^{5}$ | $20$ | $6$ | $25$ | $( 1,19,23, 9,16,18)( 2,20,24,10,15,17)( 3, 5, 8,11,26,13)( 4, 6, 7,12,25,14)(21,28,30,22,27,29)$ |
Malle's constant $a(G)$: $1/14$
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 5A | 6A | ||
Size | 1 | 10 | 15 | 20 | 30 | 24 | 20 | |
2 P | 1A | 1A | 1A | 3A | 2B | 5A | 3A | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A | 2A | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 6A | |
Type | ||||||||
120.34.1a | R | |||||||
120.34.1b | R | |||||||
120.34.4a | R | |||||||
120.34.4b | R | |||||||
120.34.5a | R | |||||||
120.34.5b | R | |||||||
120.34.6a | R |
magma: CharacterTable(G);