Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $22$ | |
| Group : | $S_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,5,2,8,6)(3,9,11,17,21,20)(4,10,12,18,22,19)(13,26,23,30,27,16)(14,25,24,29,28,15), (1,29,26,4)(2,30,25,3)(5,22,23,14)(6,21,24,13)(7,27,12,16)(8,28,11,15)(9,17,10,18) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: $S_5$
Degree 6: $\PGL(2,5)$
Degree 10: None
Degree 15: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 3,19)( 4,20)( 5, 8)( 6, 7)( 9,22)(10,21)(11,18)(12,17)(13,28)(14,27)(15,16) (23,24)(25,30)(26,29)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 1, 1 $ | $30$ | $4$ | $( 3,25,19,30)( 4,26,20,29)( 5,10, 8,21)( 6, 9, 7,22)(11,27,18,14)(12,28,17,13) (15,23,16,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5, 7)( 6, 8)( 9,10)(13,25)(14,26)(15,23)(16,24)(17,19) (18,20)(21,22)(27,29)(28,30)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 3, 9, 6,14)( 2, 4,10, 5,13)( 7,15,21,18,26)( 8,16,22,17,25) (11,20,28,30,24)(12,19,27,29,23)$ |
| $ 6, 6, 6, 6, 6 $ | $20$ | $6$ | $( 1, 3,24,22,15,11)( 2, 4,23,21,16,12)( 5,18,29,28,19, 8)( 6,17,30,27,20, 7) ( 9,14,26,10,13,25)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 3,27)( 2, 4,28)( 5,16,21)( 6,15,22)( 7,14,29)( 8,13,30)( 9,17,19) (10,18,20)(11,26,23)(12,25,24)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [120, 34] |
| Character table: |
2 3 3 2 2 . 1 1
3 1 . . 1 . 1 1
5 1 . . . 1 . .
1a 2a 4a 2b 5a 6a 3a
2P 1a 1a 2a 1a 5a 3a 3a
3P 1a 2a 4a 2b 5a 2b 1a
5P 1a 2a 4a 2b 1a 6a 3a
X.1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1
X.3 4 . . -2 -1 1 1
X.4 4 . . 2 -1 -1 1
X.5 5 1 -1 1 . 1 -1
X.6 5 1 1 -1 . -1 -1
X.7 6 -2 . . 1 . .
|