Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $20$ | |
| Group : | $D_5\times A_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,5,8,10)(2,3,6,7,9)(11,14,16,17,19,12,13,15,18,20)(21,24,26,27,30,22,23,25,28,29), (1,13,27,2,14,28)(3,12,30,10,16,25)(4,11,29,9,15,26)(5,19,22,7,17,23)(6,20,21,8,18,24) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 10: $D_{5}$ 12: $A_4$ 24: $A_4\times C_2$ 30: $D_5\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 5: $D_{5}$
Degree 6: $A_4\times C_2$
Degree 10: None
Degree 15: $D_5\times C_3$
Low degree siblings
20T37, 30T28, 40T65Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3, 9)( 4,10)( 5, 8)( 6, 7)(11,15)(12,16)(13,14)(17,19)(18,20)(21,23)(22,24) (25,29)(26,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5, 7)( 6, 8)(11,15)(12,16)(13,14)(17,19)(18,20)(21,24) (22,23)(25,30)(26,29)(27,28)$ |
| $ 10, 10, 5, 5 $ | $6$ | $10$ | $( 1, 3, 5, 7,10, 2, 4, 6, 8, 9)(11,13,16,18,19)(12,14,15,17,20) (21,24,26,27,30,22,23,25,28,29)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 5, 8,10)( 2, 3, 6, 7, 9)(11,13,16,18,19)(12,14,15,17,20) (21,23,26,28,30)(22,24,25,27,29)$ |
| $ 10, 10, 5, 5 $ | $6$ | $10$ | $( 1, 5,10, 4, 8)( 2, 6, 9, 3, 7)(11,15,19,14,18,12,16,20,13,17) (21,25,30,24,28,22,26,29,23,27)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5,10, 4, 8)( 2, 6, 9, 3, 7)(11,16,19,13,18)(12,15,20,14,17) (21,26,30,23,28)(22,25,29,24,27)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,11,23, 5,16,28,10,19,21, 4,13,26, 8,18,30)( 2,12,24, 6,15,27, 9,20,22, 3, 14,25, 7,17,29)$ |
| $ 6, 6, 6, 6, 6 $ | $20$ | $6$ | $( 1,11,27, 9,14,26)( 2,12,28,10,13,25)( 3,20,30, 8,16,24)( 4,19,29, 7,15,23) ( 5,18,22, 6,17,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,13,27)( 2,14,28)( 3,15,30)( 4,16,29)( 5,18,22)( 6,17,21)( 7,20,23) ( 8,19,24)( 9,12,26)(10,11,25)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,17,26, 4,20,28, 5,12,30, 8,14,21,10,15,23)( 2,18,25, 3,19,27, 6,11,29, 7, 13,22, 9,16,24)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,21,12, 4,23,14, 5,26,15, 8,28,17,10,30,20)( 2,22,11, 3,24,13, 6,25,16, 7, 27,18, 9,29,19)$ |
| $ 6, 6, 6, 6, 6 $ | $20$ | $6$ | $( 1,21,13, 6,27,17)( 2,22,14, 5,28,18)( 3,29,15, 4,30,16)( 7,25,20,10,23,11) ( 8,26,19, 9,24,12)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,25,20, 5,29,14,10,24,17, 4,27,12, 8,22,15)( 2,26,19, 6,30,13, 9,23,18, 3, 28,11, 7,21,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,27,14)( 2,28,13)( 3,30,16)( 4,29,15)( 5,22,17)( 6,21,18)( 7,23,19) ( 8,24,20)( 9,26,11)(10,25,12)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [120, 39] |
| Character table: |
2 3 3 3 3 2 2 2 2 . 1 1 . . 1 . 1
3 1 . . 1 . 1 . 1 1 1 1 1 1 1 1 1
5 1 1 . . 1 1 1 1 1 . 1 1 1 . 1 1
1a 2a 2b 2c 10a 5a 10b 5b 15a 6a 3a 15b 15c 6b 15d 3b
2P 1a 1a 1a 1a 5b 5b 5a 5a 15c 3b 3b 15d 15a 3a 15b 3a
3P 1a 2a 2b 2c 10b 5b 10a 5a 5b 2c 1a 5a 5a 2c 5b 1a
5P 1a 2a 2b 2c 2a 1a 2a 1a 3b 6b 3b 3b 3a 6a 3a 3a
7P 1a 2a 2b 2c 10b 5b 10a 5a 15b 6a 3a 15a 15d 6b 15c 3b
11P 1a 2a 2b 2c 10a 5a 10b 5b 15d 6b 3b 15c 15b 6a 15a 3a
13P 1a 2a 2b 2c 10b 5b 10a 5a 15b 6a 3a 15a 15d 6b 15c 3b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1 -1 1 1 1 -1 1 1
X.3 1 1 -1 -1 1 1 1 1 C -C C C /C -/C /C /C
X.4 1 1 -1 -1 1 1 1 1 /C -/C /C /C C -C C C
X.5 1 1 1 1 1 1 1 1 C C C C /C /C /C /C
X.6 1 1 1 1 1 1 1 1 /C /C /C /C C C C C
X.7 2 2 . . A A *A *A A . 2 *A *A . A 2
X.8 2 2 . . *A *A A A *A . 2 A A . *A 2
X.9 2 2 . . A A *A *A D . F E /E . /D /F
X.10 2 2 . . A A *A *A /D . /F /E E . D F
X.11 2 2 . . *A *A A A E . F D /D . /E /F
X.12 2 2 . . *A *A A A /E . /F /D D . E F
X.13 3 -1 -1 3 -1 3 -1 3 . . . . . . . .
X.14 3 -1 1 -3 -1 3 -1 3 . . . . . . . .
X.15 6 -2 . . -A B -*A *B . . . . . . . .
X.16 6 -2 . . -*A *B -A B . . . . . . . .
A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
B = 3*E(5)+3*E(5)^4
= (-3+3*Sqrt(5))/2 = 3b5
C = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
D = E(15)^7+E(15)^13
E = E(15)+E(15)^4
F = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|