Group action invariants
| Degree $n$ : | $30$ | |
| Transitive number $t$ : | $19$ | |
| Group : | $C_5:S_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,29,17,8,25,14,3,22,20,10,27,16,5,23,12)(2,30,18,7,26,13,4,21,19,9,28,15,6,24,11), (1,2)(3,9)(4,10)(5,7)(6,8)(11,29,12,30)(13,27,14,28)(15,25,16,26)(17,24,18,23)(19,22,20,21) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 10: $D_{5}$ 24: $S_4$ 30: $D_{15}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 5: $D_{5}$
Degree 6: $S_4$
Degree 10: None
Degree 15: $D_{15}$
Low degree siblings
20T33, 30T31, 40T63Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $30$ | $2$ | $( 3,10)( 4, 9)( 5, 8)( 6, 7)(11,29)(12,30)(13,27)(14,28)(15,25)(16,26)(17,24) (18,23)(19,22)(20,21)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 2, 2, 2 $ | $30$ | $4$ | $( 1, 2)( 3, 9)( 4,10)( 5, 7)( 6, 8)(11,29,12,30)(13,27,14,28)(15,25,16,26) (17,24,18,23)(19,22,20,21)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 3, 5, 8,10)( 2, 4, 6, 7, 9)(11,13,15,18,19)(12,14,16,17,20) (21,24,26,28,30)(22,23,25,27,29)$ |
| $ 10, 10, 5, 5 $ | $6$ | $10$ | $( 1, 3, 5, 8,10)( 2, 4, 6, 7, 9)(11,14,15,17,19,12,13,16,18,20) (21,23,26,27,30,22,24,25,28,29)$ |
| $ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5,10, 3, 8)( 2, 6, 9, 4, 7)(11,15,19,13,18)(12,16,20,14,17) (21,26,30,24,28)(22,25,29,23,27)$ |
| $ 10, 10, 5, 5 $ | $6$ | $10$ | $( 1, 5,10, 3, 8)( 2, 6, 9, 4, 7)(11,16,19,14,18,12,15,20,13,17) (21,25,30,23,28,22,26,29,24,27)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,11,23, 5,15,27,10,19,22, 3,13,25, 8,18,29)( 2,12,24, 6,16,28, 9,20,21, 4, 14,26, 7,17,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,13,27)( 2,14,28)( 3,15,29)( 4,16,30)( 5,18,22)( 6,17,21)( 7,20,24) ( 8,19,23)( 9,12,26)(10,11,25)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,15,22, 8,11,27, 3,18,23,10,13,29, 5,19,25)( 2,16,21, 7,12,28, 4,17,24, 9, 14,30, 6,20,26)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,17,26, 3,20,28, 5,12,30, 8,14,21,10,16,24)( 2,18,25, 4,19,27, 6,11,29, 7, 13,22, 9,15,23)$ |
| $ 15, 15 $ | $8$ | $15$ | $( 1,19,30,10,18,28, 8,15,26, 5,13,24, 3,11,21)( 2,20,29, 9,17,27, 7,16,25, 6, 14,23, 4,12,22)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [120, 38] |
| Character table: |
2 3 3 2 2 2 2 2 2 . . . . .
3 1 . . . 1 . 1 . 1 1 1 1 1
5 1 1 . . 1 1 1 1 1 1 1 1 1
1a 2a 2b 4a 5a 10a 5b 10b 15a 3a 15b 15c 15d
2P 1a 1a 1a 2a 5b 5b 5a 5a 15c 3a 15d 15b 15a
3P 1a 2a 2b 4a 5b 10b 5a 10a 5b 1a 5b 5a 5a
5P 1a 2a 2b 4a 1a 2a 1a 2a 3a 3a 3a 3a 3a
7P 1a 2a 2b 4a 5b 10b 5a 10a 15d 3a 15c 15a 15b
11P 1a 2a 2b 4a 5a 10a 5b 10b 15b 3a 15a 15d 15c
13P 1a 2a 2b 4a 5b 10b 5a 10a 15c 3a 15d 15b 15a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1 1 1 1 1
X.3 2 2 . . 2 2 2 2 -1 -1 -1 -1 -1
X.4 2 2 . . A A *A *A A 2 A *A *A
X.5 2 2 . . *A *A A A *A 2 *A A A
X.6 2 2 . . *A *A A A C -1 D E F
X.7 2 2 . . *A *A A A D -1 C F E
X.8 2 2 . . A A *A *A E -1 F D C
X.9 2 2 . . A A *A *A F -1 E C D
X.10 3 -1 -1 1 3 -1 3 -1 . . . . .
X.11 3 -1 1 -1 3 -1 3 -1 . . . . .
X.12 6 -2 . . B -A *B -*A . . . . .
X.13 6 -2 . . *B -*A B -A . . . . .
A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
B = 3*E(5)+3*E(5)^4
= (-3+3*Sqrt(5))/2 = 3b5
C = E(15)^4+E(15)^11
D = E(15)+E(15)^14
E = E(15)^7+E(15)^8
F = E(15)^2+E(15)^13
|