Show commands:
Magma
magma: G := TransitiveGroup(30, 16);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3\times D_{15}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $15$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,15,12,9,5,3,14,11,8,4,2,13,10,7,6)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19), (1,21,2,19,3,20)(4,16,5,17,6,18)(7,28,8,29,9,30)(10,27,11,25,12,26)(13,24,14,22,15,23) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $10$: $D_{5}$ $18$: $S_3\times C_3$ $30$: $D_{15}$, $D_5\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 5: $D_{5}$
Degree 6: $S_3\times C_3$
Degree 10: $D_5$
Degree 15: None
Low degree siblings
45T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
$ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)(28,29,30)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,18,17)(19,21,20) (22,24,23)(25,27,26)(28,30,29)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20) (22,24,23)(25,27,26)(28,30,29)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,19,24,27,28,18,21,23,26, 30,17,20,22,25,29)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,20,23,27,29,17,21,24,25, 30,18,19,22,26,28)$ |
$ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,21,22,27,30) (17,19,23,25,28)(18,20,24,26,29)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,19,24,27,28,18,21,23,26,30, 17,20,22,25,29)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,20,23,27,29,17,21,24,25,30, 18,19,22,26,28)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,21,22,27,30)(17,19,23,25,28) (18,20,24,26,29)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,19,24,27,28,18,21,23,26,30, 17,20,22,25,29)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,20,23,27,29,17,21,24,25,30, 18,19,22,26,28)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,21,22,27,30)(17,19,23,25,28) (18,20,24,26,29)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 7,13, 4,11, 3, 9,15, 6,10, 2, 8,14, 5,12)(16,22,30,21,27)(17,23,28,19,25) (18,24,29,20,26)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 7,13, 4,11, 3, 9,15, 6,10, 2, 8,14, 5,12)(16,23,29,21,25,18,22,28,20,27, 17,24,30,19,26)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 7,13, 4,11, 3, 9,15, 6,10, 2, 8,14, 5,12)(16,24,28,21,26,17,22,29,19,27, 18,23,30,20,25)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 8,15, 4,12, 2, 9,13, 5,10, 3, 7,14, 6,11)(16,22,30,21,27)(17,23,28,19,25) (18,24,29,20,26)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 8,15, 4,12, 2, 9,13, 5,10, 3, 7,14, 6,11)(16,23,29,21,25,18,22,28,20,27, 17,24,30,19,26)$ |
$ 15, 15 $ | $2$ | $15$ | $( 1, 8,15, 4,12, 2, 9,13, 5,10, 3, 7,14, 6,11)(16,24,28,21,26,17,22,29,19,27, 18,23,30,20,25)$ |
$ 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 9,14, 4,10)( 2, 7,15, 5,11)( 3, 8,13, 6,12)(16,22,30,21,27) (17,23,28,19,25)(18,24,29,20,26)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 9,14, 4,10)( 2, 7,15, 5,11)( 3, 8,13, 6,12)(16,23,29,21,25,18,22,28,20, 27,17,24,30,19,26)$ |
$ 15, 5, 5, 5 $ | $2$ | $15$ | $( 1, 9,14, 4,10)( 2, 7,15, 5,11)( 3, 8,13, 6,12)(16,24,28,21,26,17,22,29,19, 27,18,23,30,20,25)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1,16)( 2,17)( 3,18)( 4,30)( 5,28)( 6,29)( 7,25)( 8,26)( 9,27)(10,22)(11,23) (12,24)(13,20)(14,21)(15,19)$ |
$ 6, 6, 6, 6, 6 $ | $15$ | $6$ | $( 1,16, 2,17, 3,18)( 4,30, 5,28, 6,29)( 7,25, 8,26, 9,27)(10,22,11,23,12,24) (13,20,14,21,15,19)$ |
$ 6, 6, 6, 6, 6 $ | $15$ | $6$ | $( 1,16, 3,18, 2,17)( 4,30, 6,29, 5,28)( 7,25, 9,27, 8,26)(10,22,12,24,11,23) (13,20,15,19,14,21)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $90=2 \cdot 3^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 90.7 | magma: IdentifyGroup(G);
|
Character table: not available. |
magma: CharacterTable(G);