Show commands:
Magma
magma: G := TransitiveGroup(30, 14);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $14$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{30}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,30)(2,29)(3,27)(4,28)(5,26)(6,25)(7,23)(8,24)(9,21)(10,22)(11,20)(12,19)(13,17)(14,18)(15,16), (3,30)(4,29)(5,27)(6,28)(7,25)(8,26)(9,23)(10,24)(11,21)(12,22)(13,20)(14,19)(15,17)(16,18) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $10$: $D_{5}$ $12$: $D_{6}$ $20$: $D_{10}$ $30$: $D_{15}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: $D_{5}$
Degree 6: $D_{6}$
Degree 10: $D_{10}$
Degree 15: $D_{15}$
Low degree siblings
30T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{15}$ | $1$ | $2$ | $15$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)$ |
2B | $2^{14},1^{2}$ | $15$ | $2$ | $14$ | $( 3,30)( 4,29)( 5,27)( 6,28)( 7,25)( 8,26)( 9,23)(10,24)(11,21)(12,22)(13,20)(14,19)(15,17)(16,18)$ |
2C | $2^{15}$ | $15$ | $2$ | $15$ | $( 1,30)( 2,29)( 3,27)( 4,28)( 5,26)( 6,25)( 7,23)( 8,24)( 9,21)(10,22)(11,20)(12,19)(13,17)(14,18)(15,16)$ |
3A | $3^{10}$ | $2$ | $3$ | $20$ | $( 1,11,21)( 2,12,22)( 3,13,23)( 4,14,24)( 5,15,25)( 6,16,26)( 7,17,27)( 8,18,28)( 9,20,30)(10,19,29)$ |
5A1 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,14,25, 7,19)( 2,13,26, 8,20)( 3,16,28, 9,22)( 4,15,27,10,21)( 5,17,29,11,24)( 6,18,30,12,23)$ |
5A2 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,25,19,14, 7)( 2,26,20,13, 8)( 3,28,22,16, 9)( 4,27,21,15,10)( 5,29,24,17,11)( 6,30,23,18,12)$ |
6A | $6^{5}$ | $2$ | $6$ | $25$ | $( 1,22,11, 2,21,12)( 3,24,13, 4,23,14)( 5,26,15, 6,25,16)( 7,28,17, 8,27,18)( 9,29,20,10,30,19)$ |
10A1 | $10^{3}$ | $2$ | $10$ | $27$ | $( 1, 8,14,20,25, 2, 7,13,19,26)( 3,10,16,21,28, 4, 9,15,22,27)( 5,12,17,23,29, 6,11,18,24,30)$ |
10A3 | $10^{3}$ | $2$ | $10$ | $27$ | $( 1,20, 7,26,14, 2,19, 8,25,13)( 3,21, 9,27,16, 4,22,10,28,15)( 5,23,11,30,17, 6,24,12,29,18)$ |
15A1 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1,29,27,25,24,21,19,17,15,14,11,10, 7, 5, 4)( 2,30,28,26,23,22,20,18,16,13,12, 9, 8, 6, 3)$ |
15A2 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1,24,15, 7,29,21,14, 5,27,19,11, 4,25,17,10)( 2,23,16, 8,30,22,13, 6,28,20,12, 3,26,18, 9)$ |
15A4 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1, 5,10,14,17,21,25,29, 4, 7,11,15,19,24,27)( 2, 6, 9,13,18,22,26,30, 3, 8,12,16,20,23,28)$ |
15A7 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1,17, 4,19, 5,21, 7,24,10,25,11,27,14,29,15)( 2,18, 3,20, 6,22, 8,23, 9,26,12,28,13,30,16)$ |
30A1 | $30$ | $2$ | $30$ | $29$ | $( 1,16,29,13,27,12,25, 9,24, 8,21, 6,19, 3,17, 2,15,30,14,28,11,26,10,23, 7,22, 5,20, 4,18)$ |
30A7 | $30$ | $2$ | $30$ | $29$ | $( 1, 3, 5, 8,10,12,14,16,17,20,21,23,25,28,29, 2, 4, 6, 7, 9,11,13,15,18,19,22,24,26,27,30)$ |
30A11 | $30$ | $2$ | $30$ | $29$ | $( 1,28,24,20,15,12, 7, 3,29,26,21,18,14, 9, 5, 2,27,23,19,16,11, 8, 4,30,25,22,17,13,10, 6)$ |
30A13 | $30$ | $2$ | $30$ | $29$ | $( 1, 9,17,26, 4,12,19,28, 5,13,21,30, 7,16,24, 2,10,18,25, 3,11,20,27, 6,14,22,29, 8,15,23)$ |
Malle's constant $a(G)$: $1/14$
magma: ConjugacyClasses(G);
Group invariants
Order: | $60=2^{2} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 60.12 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 10A1 | 10A3 | 15A1 | 15A2 | 15A4 | 15A7 | 30A1 | 30A7 | 30A11 | 30A13 | ||
Size | 1 | 1 | 15 | 15 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 3A | 5A1 | 5A2 | 15A1 | 15A4 | 15A2 | 15A7 | 15A7 | 15A1 | 15A2 | 15A4 | |
3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 2A | 10A3 | 10A1 | 5A2 | 5A2 | 5A1 | 5A1 | 10A3 | 10A1 | 10A3 | 10A1 | |
5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 6A | 2A | 2A | 3A | 3A | 3A | 3A | 6A | 6A | 6A | 6A | |
Type | |||||||||||||||||||
60.12.1a | R | ||||||||||||||||||
60.12.1b | R | ||||||||||||||||||
60.12.1c | R | ||||||||||||||||||
60.12.1d | R | ||||||||||||||||||
60.12.2a | R | ||||||||||||||||||
60.12.2b | R | ||||||||||||||||||
60.12.2c1 | R | ||||||||||||||||||
60.12.2c2 | R | ||||||||||||||||||
60.12.2d1 | R | ||||||||||||||||||
60.12.2d2 | R | ||||||||||||||||||
60.12.2e1 | R | ||||||||||||||||||
60.12.2e2 | R | ||||||||||||||||||
60.12.2e3 | R | ||||||||||||||||||
60.12.2e4 | R | ||||||||||||||||||
60.12.2f1 | R | ||||||||||||||||||
60.12.2f2 | R | ||||||||||||||||||
60.12.2f3 | R | ||||||||||||||||||
60.12.2f4 | R |
magma: CharacterTable(G);