Show commands:
Magma
magma: G := TransitiveGroup(30, 10);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3\times D_5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $10$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,27,11,8,21,18)(2,28,12,7,22,17)(3,6,13,16,24,25)(4,5,14,15,23,26)(9,30,19,10,29,20), (1,19,7,26,13)(2,20,8,25,14)(3,11,9,17,15,24,21,29,28,5)(4,12,10,18,16,23,22,30,27,6) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $10$: $D_{5}$ $12$: $D_{6}$ $20$: $D_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: $D_{5}$
Degree 6: $D_{6}$
Degree 10: $D_5$
Degree 15: $D_5\times S_3$
Low degree siblings
15T7, 30T8, 30T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10},1^{10}$ | $3$ | $2$ | $10$ | $( 3,24)( 4,23)( 5,15)( 6,16)( 9,29)(10,30)(11,21)(12,22)(17,28)(18,27)$ |
2B | $2^{15}$ | $5$ | $2$ | $15$ | $( 1,20)( 2,19)( 3,27)( 4,28)( 5, 6)( 7,14)( 8,13)( 9,22)(10,21)(11,30)(12,29)(15,16)(17,23)(18,24)(25,26)$ |
2C | $2^{15}$ | $15$ | $2$ | $15$ | $( 1,20)( 2,19)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(21,30)(22,29)(23,28)(24,27)(25,26)$ |
3A | $3^{10}$ | $2$ | $3$ | $20$ | $( 1,21,11)( 2,22,12)( 3,24,13)( 4,23,14)( 5,26,15)( 6,25,16)( 7,28,17)( 8,27,18)( 9,29,19)(10,30,20)$ |
5A1 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,19, 7,26,13)( 2,20, 8,25,14)( 3,21, 9,28,15)( 4,22,10,27,16)( 5,24,11,29,17)( 6,23,12,30,18)$ |
5A2 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1, 7,13,19,26)( 2, 8,14,20,25)( 3, 9,15,21,28)( 4,10,16,22,27)( 5,11,17,24,29)( 6,12,18,23,30)$ |
6A | $6^{5}$ | $10$ | $6$ | $25$ | $( 1, 4,11,14,21,23)( 2, 3,12,13,22,24)( 5,20,15,30,26,10)( 6,19,16,29,25, 9)( 7,27,17, 8,28,18)$ |
10A1 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1,19, 7,26,13)( 2,20, 8,25,14)( 3,11, 9,17,15,24,21,29,28, 5)( 4,12,10,18,16,23,22,30,27, 6)$ |
10A3 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 7,13,19,26)( 2, 8,14,20,25)( 3,29,15,11,28,24, 9, 5,21,17)( 4,30,16,12,27,23,10, 6,22,18)$ |
15A1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,28,24,19,15,11, 7, 3,29,26,21,17,13, 9, 5)( 2,27,23,20,16,12, 8, 4,30,25,22,18,14,10, 6)$ |
15A2 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1, 3, 5, 7, 9,11,13,15,17,19,21,24,26,28,29)( 2, 4, 6, 8,10,12,14,16,18,20,22,23,25,27,30)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $60=2^{2} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 60.8 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 10A1 | 10A3 | 15A1 | 15A2 | ||
Size | 1 | 3 | 5 | 15 | 2 | 2 | 2 | 10 | 6 | 6 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 3A | 5A2 | 5A1 | 15A2 | 15A1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 2B | 10A3 | 10A1 | 5A1 | 5A2 | |
5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 6A | 2A | 2A | 3A | 3A | |
Type | |||||||||||||
60.8.1a | R | ||||||||||||
60.8.1b | R | ||||||||||||
60.8.1c | R | ||||||||||||
60.8.1d | R | ||||||||||||
60.8.2a | R | ||||||||||||
60.8.2b | R | ||||||||||||
60.8.2c1 | R | ||||||||||||
60.8.2c2 | R | ||||||||||||
60.8.2d1 | R | ||||||||||||
60.8.2d2 | R | ||||||||||||
60.8.4a1 | R | ||||||||||||
60.8.4a2 | R |
magma: CharacterTable(G);