Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $323$ | |
| Group : | $\PSU(3,3)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,7,17,19,25,8,22,14,12,9,4)(2,20,27)(3,11,26,28,21,23,18,5,16,24,15,13), (1,19,5,20,6,21,8)(2,17,10,24,16,13,7)(3,22,11,4,23,27,26)(9,15,18,28,12,14,25) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 7: None
Degree 14: None
Low degree siblings
36T6815Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $63$ | $2$ | $( 1,24)( 2,15)( 3, 9)( 4, 7)( 5,10)( 6, 8)(11,27)(12,26)(13,28)(14,25)(20,21) (22,23)$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1, 1, 1 $ | $63$ | $4$ | $( 1,15,24, 2)( 3,12, 9,26)( 4,14, 7,25)( 5,13,10,28)( 6,11, 8,27)(20,23,21,22)$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1, 1, 1 $ | $63$ | $4$ | $( 1, 2,24,15)( 3,26, 9,12)( 4,25, 7,14)( 5,28,10,13)( 6,27, 8,11)(20,22,21,23)$ |
| $ 8, 8, 8, 2, 1, 1 $ | $756$ | $8$ | $( 1, 8,15,27,24, 6, 2,11)( 3, 7,12,25, 9, 4,26,14)( 5,22,13,20,10,23,28,21) (16,17)$ |
| $ 8, 8, 8, 2, 1, 1 $ | $756$ | $8$ | $( 1,11, 2, 6,24,27,15, 8)( 3,14,26, 4, 9,25,12, 7)( 5,21,28,23,10,20,13,22) (16,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $56$ | $3$ | $( 2,15,24)( 3,25,20)( 4,26,21)( 5,27,22)( 6,28,23)( 7,11,16)( 8,12,17) ( 9,13,18)(10,14,19)$ |
| $ 6, 6, 6, 6, 3, 1 $ | $504$ | $6$ | $( 2,24,15)( 3,21,25, 4,20,26)( 5,23,27, 6,22,28)( 7,18,11, 9,16,13) ( 8,19,12,10,17,14)$ |
| $ 12, 12, 3, 1 $ | $504$ | $12$ | $( 2,15,24)( 3,28,21, 5,25,23, 4,27,20, 6,26,22)( 7,14,18, 8,11,19, 9,12,16,10, 13,17)$ |
| $ 12, 12, 3, 1 $ | $504$ | $12$ | $( 2,15,24)( 3,27,21, 6,25,22, 4,28,20, 5,26,23)( 7,12,18,10,11,17, 9,14,16, 8, 13,19)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2 $ | $378$ | $4$ | $( 1,11,22,10)( 2, 6,21,13)( 3, 9)( 4,14, 7,25)( 5,24,27,23)( 8,20,28,15) (12,26)(16,18,17,19)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $672$ | $3$ | $( 1,13,28)( 2,12,25)( 3,19,16)( 4,22,20)( 5, 6, 9)( 8,17,21)(10,23,18) (11,27,15)(14,26,24)$ |
| $ 7, 7, 7, 7 $ | $864$ | $7$ | $( 1, 8,15,21,19,18,22)( 2,28, 7, 6, 9,13,24)( 3,26,23,10,20,14, 4) ( 5,12,16,11,27,17,25)$ |
| $ 7, 7, 7, 7 $ | $864$ | $7$ | $( 1,22,18,19,21,15, 8)( 2,24,13, 9, 6, 7,28)( 3, 4,14,20,10,23,26) ( 5,25,17,27,11,16,12)$ |
Group invariants
| Order: | $6048=2^{5} \cdot 3^{3} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 5 . 2 5 5 5 2 2 2 . . 3 3 4
3 3 2 3 1 1 1 1 1 1 . . . . .
7 1 . . . . . . . . 1 1 . . .
1a 3a 3b 2a 4a 4b 6a 12a 12b 7a 7b 8a 8b 4c
2P 1a 3a 3b 1a 2a 2a 3b 6a 6a 7a 7b 4b 4a 2a
3P 1a 1a 1a 2a 4b 4a 2a 4a 4b 7b 7a 8b 8a 4c
5P 1a 3a 3b 2a 4a 4b 6a 12a 12b 7b 7a 8a 8b 4c
7P 1a 3a 3b 2a 4b 4a 6a 12b 12a 1a 1a 8b 8a 4c
11P 1a 3a 3b 2a 4b 4a 6a 12b 12a 7a 7b 8b 8a 4c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 6 . -3 -2 -2 -2 1 1 1 -1 -1 . . 2
X.3 7 1 -2 -1 3 3 2 . . . . -1 -1 -1
X.4 7 1 -2 3 A /A . D /D . . E -E 1
X.5 7 1 -2 3 /A A . /D D . . -E E 1
X.6 14 -1 5 -2 2 2 1 -1 -1 . . . . 2
X.7 21 . 3 5 1 1 -1 1 1 . . -1 -1 1
X.8 21 . 3 1 B /B 1 E -E . . -E E -1
X.9 21 . 3 1 /B B 1 -E E . . E -E -1
X.10 27 . . 3 3 3 . . . -1 -1 1 1 -1
X.11 28 1 1 -4 C -C -1 -E E . . . . .
X.12 28 1 1 -4 -C C -1 E -E . . . . .
X.13 32 -1 -4 . . . . . . F /F . . .
X.14 32 -1 -4 . . . . . . /F F . . .
A = -1-2*E(4)
= -1-2*Sqrt(-1) = -1-2i
B = -3-2*E(4)
= -3-2*Sqrt(-1) = -3-2i
C = -4*E(4)
= -4*Sqrt(-1) = -4i
D = -1-E(4)
= -1-Sqrt(-1) = -1-i
E = -E(4)
= -Sqrt(-1) = -i
F = -E(7)-E(7)^2-E(7)^4
= (1-Sqrt(-7))/2 = -b7
|