Group action invariants
| Degree $n$ : | $28$ | |
| Transitive number $t$ : | $120$ | |
| Group : | $\PSL(2,13)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,26,11,15,17,13,10)(2,25,12,16,18,14,9)(3,7,5,28,20,22,23)(4,8,6,27,19,21,24), (1,14,9,17,28,3,20)(2,13,10,18,27,4,19)(5,7,26,15,23,22,11)(6,8,25,16,24,21,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 7: None
Degree 14: $\PSL(2,13)$
Low degree siblings
14T30, 42T176Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $91$ | $2$ | $( 1,15)( 2,16)( 3, 4)( 5,14)( 6,13)( 7,20)( 8,19)( 9,26)(10,25)(11,23)(12,24) (17,18)(21,28)(22,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $182$ | $3$ | $( 1,27,14)( 2,28,13)( 5,15,22)( 6,16,21)( 7,12, 9)( 8,11,10)(19,23,25) (20,24,26)$ |
| $ 6, 6, 6, 6, 2, 2 $ | $182$ | $6$ | $( 1, 5,27,15,14,22)( 2, 6,28,16,13,21)( 3, 4)( 7,26,12,20, 9,24) ( 8,25,11,19,10,23)(17,18)$ |
| $ 7, 7, 7, 7 $ | $156$ | $7$ | $( 1, 5, 9,14,22,17, 4)( 2, 6,10,13,21,18, 3)( 7,12,23,27,26,15,19) ( 8,11,24,28,25,16,20)$ |
| $ 7, 7, 7, 7 $ | $156$ | $7$ | $( 1,22, 5,17, 9, 4,14)( 2,21, 6,18,10, 3,13)( 7,26,12,15,23,19,27) ( 8,25,11,16,24,20,28)$ |
| $ 7, 7, 7, 7 $ | $156$ | $7$ | $( 1, 9,22, 4, 5,14,17)( 2,10,21, 3, 6,13,18)( 7,23,26,19,12,27,15) ( 8,24,25,20,11,28,16)$ |
| $ 13, 13, 1, 1 $ | $84$ | $13$ | $( 1, 9,12,21,24,20,14, 5, 4, 8,25,18,15)( 2,10,11,22,23,19,13, 6, 3, 7,26,17, 16)$ |
| $ 13, 13, 1, 1 $ | $84$ | $13$ | $( 1, 4,21,18,14, 9, 8,24,15, 5,12,25,20)( 2, 3,22,17,13,10, 7,23,16, 6,11,26, 19)$ |
Group invariants
| Order: | $1092=2^{2} \cdot 3 \cdot 7 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1092, 25] |
| Character table: |
2 2 . . 1 2 1 . . .
3 1 . . 1 1 1 . . .
7 1 . . . . . 1 1 1
13 1 1 1 . . . . . .
1a 13a 13b 3a 2a 6a 7a 7b 7c
2P 1a 13b 13a 3a 1a 3a 7c 7a 7b
3P 1a 13a 13b 1a 2a 2a 7b 7c 7a
5P 1a 13b 13a 3a 2a 6a 7c 7a 7b
7P 1a 13b 13a 3a 2a 6a 1a 1a 1a
11P 1a 13b 13a 3a 2a 6a 7b 7c 7a
13P 1a 1a 1a 3a 2a 6a 7a 7b 7c
X.1 1 1 1 1 1 1 1 1 1
X.2 7 A *A 1 -1 -1 . . .
X.3 7 *A A 1 -1 -1 . . .
X.4 12 -1 -1 . . . B C D
X.5 12 -1 -1 . . . C D B
X.6 12 -1 -1 . . . D B C
X.7 13 . . 1 1 1 -1 -1 -1
X.8 14 1 1 -1 2 -1 . . .
X.9 14 1 1 -1 -2 1 . . .
A = -E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12
= (1-Sqrt(13))/2 = -b13
B = -E(7)^3-E(7)^4
C = -E(7)^2-E(7)^5
D = -E(7)-E(7)^6
|