Group action invariants
Degree $n$: | $27$ | |
Transitive number $t$: | $993$ | |
Group: | $\PSp(4,3)$ | |
Parity: | $1$ | |
Primitive: | yes | |
Nilpotency class: | $-1$ (not nilpotent) | |
$\card{\Aut(F/K)}$: | $1$ | |
Generators: | (1,2,20,25)(3,17,15,22)(4,8)(5,18,24,7)(6,19,26,9)(10,11,27,21)(13,14)(16,23), (1,16,24,4,5,8,7,21,25)(2,9,17,14,22,19,11,26,6)(3,20,10,12,27,18,15,13,23) |
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 9: None
Low degree siblings
36T12781, 40T14344, 40T14345, 45T666Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $45$ | $2$ | $( 1, 3)( 4, 6)( 7, 9)(10,15)(11,14)(12,13)(16,21)(17,20)(18,19)(22,27)(23,26) (24,25)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(10,18,23)(11,16,24)(12,17,22)(13,20,27) (14,21,25)(15,19,26)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 7, 4)( 2, 8, 5)( 3, 9, 6)(10,23,18)(11,24,16)(12,22,17)(13,27,20) (14,25,21)(15,26,19)$ |
$ 4, 4, 4, 4, 4, 4, 1, 1, 1 $ | $540$ | $4$ | $( 1,11, 3,14)( 4,16, 6,21)( 7,24, 9,25)(10,22,15,27)(12,19,13,18)(17,26,20,23)$ |
$ 6, 6, 6, 6, 3 $ | $360$ | $6$ | $( 1, 9, 4, 3, 7, 6)( 2, 8, 5)(10,26,18,15,23,19)(11,25,16,14,24,21) (12,27,17,13,22,20)$ |
$ 6, 6, 6, 6, 3 $ | $360$ | $6$ | $( 1, 6, 7, 3, 4, 9)( 2, 5, 8)(10,19,23,15,18,26)(11,21,24,14,16,25) (12,20,22,13,17,27)$ |
$ 12, 12, 3 $ | $2160$ | $12$ | $( 1,21, 9,11, 4,25, 3,16, 7,14, 6,24)( 2, 5, 8)(10,13,26,22,18,20,15,12,23,27, 19,17)$ |
$ 12, 12, 3 $ | $2160$ | $12$ | $( 1,25, 6,11, 7,21, 3,24, 4,14, 9,16)( 2, 8, 5)(10,20,19,22,23,13,15,17,18,27, 26,12)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $270$ | $2$ | $( 4,10)( 6,15)( 7,13)( 9,12)(16,22)(17,20)(18,24)(19,25)(21,27)(23,26)$ |
$ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $240$ | $3$ | $( 1,17,26)( 3,20,23)( 4,10,21)( 6,15,16)( 7,24,13)( 9,25,12)$ |
$ 6, 6, 3, 3, 2, 2, 2, 2, 1 $ | $2160$ | $6$ | $( 1,10,17,21,26, 4)( 2, 5)( 3,15,20,16,23, 6)( 7,13,24)( 9,12,25)(11,27) (14,22)(18,19)$ |
$ 6, 6, 6, 2, 2, 2, 1, 1, 1 $ | $720$ | $6$ | $( 1,15,17,16,26, 6)( 2,11)( 3, 7,20,24,23,13)( 4,25,10,12,21, 9)( 5,22)( 8,18)$ |
$ 6, 6, 6, 2, 2, 2, 1, 1, 1 $ | $720$ | $6$ | $( 1, 6,26,16,17,15)( 2,11)( 3,13,23,24,20, 7)( 4, 9,21,12,10,25)( 5,22)( 8,18)$ |
$ 4, 4, 4, 4, 4, 2, 2, 2, 1 $ | $3240$ | $4$ | $( 1,11, 3,14)( 4,13,15, 9)( 5, 8)( 6,12,10, 7)(16,24,27,19)(17,23) (18,21,25,22)(20,26)$ |
$ 5, 5, 5, 5, 5, 1, 1 $ | $5184$ | $5$ | $( 1,15,17,27, 9)( 2, 5, 6,13,26)( 3,10,19,20,22)( 4,11,21,23, 8) (12,24,14,16,25)$ |
$ 9, 9, 9 $ | $2880$ | $9$ | $( 1,13,20,16,21,17,19,26, 2)( 3,10,27, 9, 5, 7, 6,15,23)( 4,11,25,12,18,24,14, 22, 8)$ |
$ 9, 9, 9 $ | $2880$ | $9$ | $( 1,20,21,19, 2,13,16,17,26)( 3,27, 5, 6,23,10, 9, 7,15)( 4,25,18,14, 8,11,12, 24,22)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $480$ | $3$ | $( 1, 9,23)( 2,22, 6)( 3,26,25)( 4,20,18)( 5,17,11)( 7,16,10)( 8,12,13) (14,27,19)(15,21,24)$ |
$ 6, 6, 6, 6, 3 $ | $1440$ | $6$ | $( 1, 7, 9,16,23,10)( 2,17,22,11, 6, 5)( 3,21,26,24,25,15)( 4, 8,20,12,18,13) (14,19,27)$ |
Group invariants
Order: | $25920=2^{6} \cdot 3^{4} \cdot 5$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | no | |
Label: | not available |
Character table: |
2 6 3 3 . . . 6 2 2 2 1 1 3 3 5 2 4 2 2 3 3 4 4 4 2 2 . 2 3 2 2 3 2 2 2 1 1 1 1 1 . 5 1 . . . . 1 . . . . . . . . . . . . . . 1a 3a 3b 9a 9b 5a 2a 3c 6a 6b 3d 6c 6d 6e 2b 6f 4a 12a 12b 4b 2P 1a 3b 3a 9b 9a 5a 1a 3c 3c 3c 3d 3d 3a 3b 1a 3c 2a 6d 6e 2b 3P 1a 1a 1a 3a 3b 5a 2a 1a 2a 2a 1a 2a 2a 2a 2b 2b 4a 4a 4a 4b 5P 1a 3b 3a 9b 9a 1a 2a 3c 6b 6a 3d 6c 6e 6d 2b 6f 4a 12b 12a 4b 7P 1a 3a 3b 9a 9b 5a 2a 3c 6a 6b 3d 6c 6d 6e 2b 6f 4a 12a 12b 4b 11P 1a 3b 3a 9b 9a 5a 2a 3c 6b 6a 3d 6c 6e 6d 2b 6f 4a 12b 12a 4b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 5 A /A F /F . -3 -1 G -G 2 . I /I 1 1 1 -F -/F -1 X.3 5 /A A /F F . -3 -1 -G G 2 . /I I 1 1 1 -/F -F -1 X.4 6 -3 -3 . . 1 -2 3 1 1 . -2 1 1 2 -1 2 -1 -1 . X.5 10 B /B -F -/F . 2 1 -1 -1 1 -1 A /A -2 1 2 /F F . X.6 10 /B B -/F -F . 2 1 -1 -1 1 -1 /A A -2 1 2 F /F . X.7 15 -3 -3 . . . 7 . -2 -2 3 1 1 1 3 . -1 -1 -1 1 X.8 15 6 6 . . . -1 3 -1 -1 . 2 2 2 -1 -1 3 . . -1 X.9 20 2 2 -1 -1 . 4 5 1 1 -1 1 -2 -2 4 1 . . . . X.10 24 6 6 . . -1 8 . 2 2 3 -1 2 2 . . . . . . X.11 30 3 3 . . . -10 3 -1 -1 3 -1 -1 -1 2 -1 -2 1 1 . X.12 30 C /C . . . 6 -3 G -G . . I /I 2 -1 2 F /F . X.13 30 /C C . . . 6 -3 -G G . . /I I 2 -1 2 /F F . X.14 40 D /D -F -/F . -8 -2 H /H 1 1 H /H . . . . . . X.15 40 /D D -/F -F . -8 -2 /H H 1 1 /H H . . . . . . X.16 45 E /E . . . -3 . . . . . J /J -3 . 1 -F -/F 1 X.17 45 /E E . . . -3 . . . . . /J J -3 . 1 -/F -F 1 X.18 60 6 6 . . . -4 -3 -1 -1 -3 -1 2 2 4 1 . . . . X.19 64 -8 -8 1 1 -1 . 4 . . -2 . . . . . . . . . X.20 81 . . . . 1 9 . . . . . . . -3 . -3 . . -1 A = -2*E(3)+E(3)^2 = (1-3*Sqrt(-3))/2 = -1-3b3 B = 5*E(3)+2*E(3)^2 = (-7+3*Sqrt(-3))/2 = -2+3b3 C = 6*E(3)-3*E(3)^2 = (-3+9*Sqrt(-3))/2 = 3+9b3 D = 2*E(3)+8*E(3)^2 = -5-3*Sqrt(-3) = -5-3i3 E = -9*E(3)^2 = (9+9*Sqrt(-3))/2 = 9+9b3 F = -E(3)^2 = (1+Sqrt(-3))/2 = 1+b3 G = E(3)-E(3)^2 = Sqrt(-3) = i3 H = -2*E(3)^2 = 1+Sqrt(-3) = 1+i3 I = E(3)+2*E(3)^2 = (-3-Sqrt(-3))/2 = -2-b3 J = 3*E(3) = (-3+3*Sqrt(-3))/2 = 3b3 |