Group action invariants
| Degree $n$ : | $27$ | |
| Transitive number $t$ : | $993$ | |
| Group : | $\PSp(4,3)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,20,25)(3,17,15,22)(4,8)(5,18,24,7)(6,19,26,9)(10,11,27,21)(13,14)(16,23), (1,16,24,4,5,8,7,21,25)(2,9,17,14,22,19,11,26,6)(3,20,10,12,27,18,15,13,23) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 9: None
Low degree siblings
36T12781, 40T14344, 40T14345, 45T666Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $270$ | $2$ | $( 1, 6)( 2, 9)( 4,25)( 5,22)( 7,23)( 8,26)(10,11)(12,21)(15,18)(16,17)$ |
| $ 4, 4, 4, 4, 4, 2, 2, 2, 1 $ | $3240$ | $4$ | $( 1,25, 6, 4)( 2, 8, 9,26)( 3,24)( 5, 7,22,23)(10,21,11,12)(13,14) (15,17,18,16)(19,20)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $240$ | $3$ | $( 1, 9,17)( 2,16, 6)( 3,20,19)( 4, 8,21)(12,25,26)(13,14,24)$ |
| $ 6, 6, 3, 3, 2, 2, 2, 2, 1 $ | $2160$ | $6$ | $( 1,16, 9, 6,17, 2)( 3,19,20)( 4,12, 8,25,21,26)( 5,22)( 7,23)(10,11) (13,24,14)(15,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $45$ | $2$ | $( 1, 4)( 2,26)( 3,24)( 5,22)( 6,25)( 8, 9)(10,18)(11,15)(12,16)(13,20)(14,19) (17,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $480$ | $3$ | $( 1, 6,20)( 2,19, 9)( 3,17,16)( 4,25,13)( 5,15,10)( 7,23,27)( 8,26,14) (11,18,22)(12,24,21)$ |
| $ 6, 6, 6, 6, 3 $ | $1440$ | $6$ | $( 1,13, 6, 4,20,25)( 2, 8,19,26, 9,14)( 3,12,17,24,16,21)( 5,18,15,22,10,11) ( 7,27,23)$ |
| $ 6, 6, 6, 2, 2, 2, 1, 1, 1 $ | $720$ | $6$ | $( 1,14,17,13, 9,24)( 2,21, 6, 8,16, 4)( 3,25,19,12,20,26)( 7,11)(18,23)(22,27)$ |
| $ 6, 6, 6, 2, 2, 2, 1, 1, 1 $ | $720$ | $6$ | $( 1,24, 9,13,17,14)( 2, 4,16, 8, 6,21)( 3,26,20,12,19,25)( 7,11)(18,23)(22,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1,19,16)( 2,17,20)( 3, 6, 9)( 4,14,12)( 5,10,15)( 7,27,23)( 8,24,25) (11,22,18)(13,26,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1,16,19)( 2,20,17)( 3, 9, 6)( 4,12,14)( 5,15,10)( 7,23,27)( 8,25,24) (11,18,22)(13,21,26)$ |
| $ 6, 6, 6, 6, 3 $ | $360$ | $6$ | $( 1,21,19,13,16,26)( 2,25,17, 8,20,24)( 3,14, 6,12, 9, 4)( 5,15,10) ( 7,18,27,11,23,22)$ |
| $ 6, 6, 6, 6, 3 $ | $360$ | $6$ | $( 1,26,16,13,19,21)( 2,24,20, 8,17,25)( 3, 4, 9,12, 6,14)( 5,10,15) ( 7,22,23,11,27,18)$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1, 1 $ | $540$ | $4$ | $( 1,17,13,24)( 2,21, 8,16)( 3, 7,12,11)( 4,22, 6,27)( 9,23,14,18)(19,20,26,25)$ |
| $ 12, 12, 3 $ | $2160$ | $12$ | $( 1,25,21,17,19, 8,13,20,16,24,26, 2)( 3,22,14, 7, 6,18,12,27, 9,11, 4,23) ( 5,10,15)$ |
| $ 12, 12, 3 $ | $2160$ | $12$ | $( 1, 8,26,17,16,25,13, 2,19,24,21,20)( 3,18, 4, 7, 9,22,12,23, 6,11,14,27) ( 5,15,10)$ |
| $ 9, 9, 9 $ | $2880$ | $9$ | $( 1, 8,17, 3,25,19, 2,24, 6)( 4,13, 7,12,21,15,14,26,11)( 5,10, 9,22,18,20,27, 23,16)$ |
| $ 9, 9, 9 $ | $2880$ | $9$ | $( 1,17,25, 2, 6, 8, 3,19,24)( 4, 7,21,14,11,13,12,15,26)( 5, 9,18,27,16,10,22, 20,23)$ |
| $ 5, 5, 5, 5, 5, 1, 1 $ | $5184$ | $5$ | $( 1,23,20,14,24)( 2,27, 4,10,16)( 3, 7,18, 9,11)( 6,15,21, 8,22) (12,17,19,26,13)$ |
Group invariants
| Order: | $25920=2^{6} \cdot 3^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 . 6 4 3 3 3 3 2 5 2 2 2 2 2 . . 1 1 3
3 4 . 2 1 4 4 2 2 3 1 1 1 1 2 2 2 2 3 2 .
5 1 1 . . . . . . . . . . . . . . . . . .
1a 5a 2a 4a 3a 3b 6a 6b 3c 2b 6c 12a 12b 6d 6e 9a 9b 3d 6f 4b
2P 1a 5a 1a 2a 3b 3a 3a 3b 3c 1a 3c 6a 6b 3c 3c 9b 9a 3d 3d 2b
3P 1a 5a 2a 4a 1a 1a 2a 2a 1a 2b 2b 4a 4a 2a 2a 3b 3a 1a 2a 4b
5P 1a 1a 2a 4a 3b 3a 6b 6a 3c 2b 6c 12b 12a 6e 6d 9b 9a 3d 6f 4b
7P 1a 5a 2a 4a 3a 3b 6a 6b 3c 2b 6c 12a 12b 6d 6e 9a 9b 3d 6f 4b
11P 1a 5a 2a 4a 3b 3a 6b 6a 3c 2b 6c 12b 12a 6e 6d 9b 9a 3d 6f 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 5 . -3 1 A /A F /F -1 1 1 I /I J -J -/I -I 2 . -1
X.3 5 . -3 1 /A A /F F -1 1 1 /I I -J J -I -/I 2 . -1
X.4 6 1 -2 2 -3 -3 1 1 3 2 -1 -1 -1 1 1 . . . -2 .
X.5 10 . 2 2 B /B A /A 1 -2 1 -/I -I -1 -1 /I I 1 -1 .
X.6 10 . 2 2 /B B /A A 1 -2 1 -I -/I -1 -1 I /I 1 -1 .
X.7 15 . 7 -1 -3 -3 1 1 . 3 . -1 -1 -2 -2 . . 3 1 1
X.8 15 . -1 3 6 6 2 2 3 -1 -1 . . -1 -1 . . . 2 -1
X.9 20 . 4 . 2 2 -2 -2 5 4 1 . . 1 1 -1 -1 -1 1 .
X.10 24 -1 8 . 6 6 2 2 . . . . . 2 2 . . 3 -1 .
X.11 30 . -10 -2 3 3 -1 -1 3 2 -1 1 1 -1 -1 . . 3 -1 .
X.12 30 . 6 2 C /C F /F -3 2 -1 -I -/I J -J . . . . .
X.13 30 . 6 2 /C C /F F -3 2 -1 -/I -I -J J . . . . .
X.14 40 . -8 . D /D G /G -2 . . . . G /G /I I 1 1 .
X.15 40 . -8 . /D D /G G -2 . . . . /G G I /I 1 1 .
X.16 45 . -3 1 E /E H /H . -3 . I /I . . . . . . 1
X.17 45 . -3 1 /E E /H H . -3 . /I I . . . . . . 1
X.18 60 . -4 . 6 6 2 2 -3 4 1 . . -1 -1 . . -3 -1 .
X.19 64 -1 . . -8 -8 . . 4 . . . . . . 1 1 -2 . .
X.20 81 1 9 -3 . . . . . -3 . . . . . . . . . -1
A = -2*E(3)+E(3)^2
= (1-3*Sqrt(-3))/2 = -1-3b3
B = 5*E(3)+2*E(3)^2
= (-7+3*Sqrt(-3))/2 = -2+3b3
C = 6*E(3)-3*E(3)^2
= (-3+9*Sqrt(-3))/2 = 3+9b3
D = 2*E(3)+8*E(3)^2
= -5-3*Sqrt(-3) = -5-3i3
E = -9*E(3)^2
= (9+9*Sqrt(-3))/2 = 9+9b3
F = E(3)+2*E(3)^2
= (-3-Sqrt(-3))/2 = -2-b3
G = -2*E(3)^2
= 1+Sqrt(-3) = 1+i3
H = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
I = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
J = E(3)-E(3)^2
= Sqrt(-3) = i3
|