Show commands:
Magma
magma: G := TransitiveGroup(27, 993);
Group action invariants
Degree $n$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $993$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PSp(4,3)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,20,25)(3,17,15,22)(4,8)(5,18,24,7)(6,19,26,9)(10,11,27,21)(13,14)(16,23), (1,16,24,4,5,8,7,21,25)(2,9,17,14,22,19,11,26,6)(3,20,10,12,27,18,15,13,23) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 9: None
Low degree siblings
36T12781, 40T14344, 40T14345, 45T666Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{3}$ | $45$ | $2$ | $12$ | $( 1, 2)( 4, 5)( 7, 8)(10,14)(11,13)(12,15)(16,20)(17,19)(18,21)(22,26)(23,25)(24,27)$ |
2B | $2^{10},1^{7}$ | $270$ | $2$ | $10$ | $( 1,24)( 2,27)( 4,25)( 5,23)( 7, 8)(11,19)(12,21)(13,17)(15,18)(22,26)$ |
3A1 | $3^{9}$ | $40$ | $3$ | $18$ | $( 1, 3, 2)( 4,18,20)( 5,10,15)( 6,23,25)( 7,21,17)( 8,13,12)( 9,26,22)(11,16,24)(14,19,27)$ |
3A-1 | $3^{9}$ | $40$ | $3$ | $18$ | $( 1, 2, 3)( 4,20,18)( 5,15,10)( 6,25,23)( 7,17,21)( 8,12,13)( 9,22,26)(11,24,16)(14,27,19)$ |
3B | $3^{6},1^{9}$ | $240$ | $3$ | $12$ | $( 1,27,11)( 2,19,24)( 3,14,16)( 4,23,15)( 5,18,25)( 6,10,20)$ |
3C | $3^{9}$ | $480$ | $3$ | $18$ | $( 1,11,27)( 2,24,19)( 3,16,14)( 4, 6, 5)( 7,13,22)( 8,26,17)( 9,21,12)(10,18,23)(15,20,25)$ |
4A | $4^{6},1^{3}$ | $540$ | $4$ | $18$ | $( 1,21, 2,18)( 4,13, 5,11)( 7,26, 8,22)(10,16,14,20)(12,27,15,24)(17,23,19,25)$ |
4B | $4^{5},2^{3},1$ | $3240$ | $4$ | $18$ | $( 1, 4,24,25)( 2, 5,27,23)( 3, 6)( 7,26, 8,22)(10,20)(11,21,19,12)(13,18,17,15)(14,16)$ |
5A | $5^{5},1^{2}$ | $5184$ | $5$ | $20$ | $( 1, 3,27, 5, 4)( 2,24,22, 6, 7)( 8,26,25, 9,23)(10,12,19,21,20)(13,15,14,16,18)$ |
6A1 | $6^{4},3$ | $360$ | $6$ | $22$ | $( 1, 5, 3,10, 2,15)( 4,27,18,14,20,19)( 6,24,23,11,25,16)( 7,22,21, 9,17,26)( 8,12,13)$ |
6A-1 | $6^{4},3$ | $360$ | $6$ | $22$ | $( 1,15, 2,10, 3, 5)( 4,19,20,14,18,27)( 6,16,25,11,23,24)( 7,26,17, 9,21,22)( 8,13,12)$ |
6B1 | $6^{3},2^{3},1^{3}$ | $720$ | $6$ | $18$ | $( 1,15,27, 4,11,23)( 2,25,19, 5,24,18)( 3,20,14, 6,16,10)(12,13)(17,21)(22,26)$ |
6B-1 | $6^{3},2^{3},1^{3}$ | $720$ | $6$ | $18$ | $( 1,23,11, 4,27,15)( 2,18,24, 5,19,25)( 3,10,16, 6,14,20)(12,13)(17,21)(22,26)$ |
6C | $6^{4},3$ | $1440$ | $6$ | $22$ | $( 1,22,11, 7,27,13)( 2,17,24, 8,19,26)( 3,12,16, 9,14,21)( 4, 5, 6)(10,25,18,15,23,20)$ |
6D | $6^{2},3^{2},2^{4},1$ | $2160$ | $6$ | $18$ | $( 1,19,27,24,11, 2)( 3,16,14)( 4,18,23,25,15, 5)( 6,20,10)( 7, 8)(12,21)(13,17)(22,26)$ |
9A1 | $9^{3}$ | $2880$ | $9$ | $24$ | $( 1,25,21, 3, 6,17, 2,23, 7)( 4,22,14,18, 9,19,20,26,27)( 5,12,11,10, 8,16,15,13,24)$ |
9A-1 | $9^{3}$ | $2880$ | $9$ | $24$ | $( 1,17,25, 2,21,23, 3, 7, 6)( 4,19,22,20,14,26,18,27, 9)( 5,16,12,15,11,13,10,24, 8)$ |
12A1 | $12^{2},3$ | $2160$ | $12$ | $24$ | $( 1, 4, 5,27, 3,18,10,14, 2,20,15,19)( 6,22,24,21,23, 9,11,17,25,26,16, 7)( 8,13,12)$ |
12A-1 | $12^{2},3$ | $2160$ | $12$ | $24$ | $( 1,18,15,27, 2, 4,10,19, 3,20, 5,14)( 6, 9,16,21,25,22,11, 7,23,26,24,17)( 8,12,13)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $25920=2^{6} \cdot 3^{4} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 25920.a | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A1 | 3A-1 | 3B | 3C | 4A | 4B | 5A | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C | 6D | 9A1 | 9A-1 | 12A1 | 12A-1 | ||
Size | 1 | 45 | 270 | 40 | 40 | 240 | 480 | 540 | 3240 | 5184 | 360 | 360 | 720 | 720 | 1440 | 2160 | 2880 | 2880 | 2160 | 2160 | |
2 P | 1A | 1A | 1A | 3A-1 | 3A1 | 3B | 3C | 2A | 2B | 5A | 3A1 | 3A-1 | 3B | 3B | 3C | 3B | 9A-1 | 9A1 | 6A1 | 6A-1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 4A | 4B | 5A | 2A | 2A | 2A | 2A | 2A | 2B | 3A1 | 3A-1 | 4A | 4A | |
5 P | 1A | 2A | 2B | 3A-1 | 3A1 | 3B | 3C | 4A | 4B | 1A | 6A-1 | 6A1 | 6B-1 | 6B1 | 6C | 6D | 9A-1 | 9A1 | 12A-1 | 12A1 | |
Type |
magma: CharacterTable(G);