Show commands:
Magma
magma: G := TransitiveGroup(27, 8);
Group action invariants
Degree $n$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{27}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,22)(2,24)(3,23)(4,21)(5,20)(6,19)(7,17)(8,16)(9,18)(10,15)(11,14)(12,13)(25,26), (1,18,6,19,9,22,12,26,14,2,16,4,20,7,23,10,27,15,3,17,5,21,8,24,11,25,13) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $18$: $D_{9}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 9: $D_{9}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13},1$ | $27$ | $2$ | $13$ | $( 2, 3)( 4,27)( 5,26)( 6,25)( 7,23)( 8,22)( 9,24)(10,20)(11,19)(12,21)(13,18)(14,17)(15,16)$ |
3A | $3^{9}$ | $2$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$ |
9A1 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1,20,11, 2,21,12, 3,19,10)( 4,24,14, 5,22,15, 6,23,13)( 7,25,16, 8,26,17, 9,27,18)$ |
9A2 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1,19,12, 2,20,10, 3,21,11)( 4,23,15, 5,24,13, 6,22,14)( 7,27,17, 8,25,18, 9,26,16)$ |
9A4 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1,21,10, 2,19,11, 3,20,12)( 4,22,13, 5,23,14, 6,24,15)( 7,26,18, 8,27,16, 9,25,17)$ |
27A1 | $27$ | $2$ | $27$ | $26$ | $( 1,16, 5,19, 7,24,12,27,13, 2,17, 6,20, 8,22,10,25,14, 3,18, 4,21, 9,23,11,26,15)$ |
27A2 | $27$ | $2$ | $27$ | $26$ | $( 1,18, 6,19, 9,22,12,26,14, 2,16, 4,20, 7,23,10,27,15, 3,17, 5,21, 8,24,11,25,13)$ |
27A4 | $27$ | $2$ | $27$ | $26$ | $( 1,27,22,21,16,13,10, 9, 5, 2,25,23,19,17,14,11, 7, 6, 3,26,24,20,18,15,12, 8, 4)$ |
27A5 | $27$ | $2$ | $27$ | $26$ | $( 1, 9,14,20,27, 5,11,18,22, 2, 7,15,21,25, 6,12,16,23, 3, 8,13,19,26, 4,10,17,24)$ |
27A7 | $27$ | $2$ | $27$ | $26$ | $( 1,25,24,21,17,15,10, 7, 4, 2,26,22,19,18,13,11, 8, 5, 3,27,23,20,16,14,12, 9, 6)$ |
27A8 | $27$ | $2$ | $27$ | $26$ | $( 1,26,23,21,18,14,10, 8, 6, 2,27,24,19,16,15,11, 9, 4, 3,25,22,20,17,13,12, 7, 5)$ |
27A10 | $27$ | $2$ | $27$ | $26$ | $( 1,17, 4,19, 8,23,12,25,15, 2,18, 5,20, 9,24,10,26,13, 3,16, 6,21, 7,22,11,27,14)$ |
27A11 | $27$ | $2$ | $27$ | $26$ | $( 1, 8,15,20,26, 6,11,17,23, 2, 9,13,21,27, 4,12,18,24, 3, 7,14,19,25, 5,10,16,22)$ |
27A13 | $27$ | $2$ | $27$ | $26$ | $( 1, 7,13,20,25, 4,11,16,24, 2, 8,14,21,26, 5,12,17,22, 3, 9,15,19,27, 6,10,18,23)$ |
magma: ConjugacyClasses(G);
Malle's constant $a(G)$: $1/13$
Group invariants
Order: | $54=2 \cdot 3^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 54.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 9A1 | 9A2 | 9A4 | 27A1 | 27A2 | 27A4 | 27A5 | 27A7 | 27A8 | 27A10 | 27A11 | 27A13 | ||
Size | 1 | 27 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 3A | 9A2 | 9A4 | 9A1 | 27A5 | 27A13 | 27A8 | 27A2 | 27A1 | 27A10 | 27A4 | 27A11 | 27A7 | |
3 P | 1A | 2A | 1A | 3A | 3A | 3A | 9A2 | 9A2 | 9A4 | 9A1 | 9A4 | 9A4 | 9A2 | 9A1 | 9A1 | |
Type | ||||||||||||||||
54.1.1a | R | |||||||||||||||
54.1.1b | R | |||||||||||||||
54.1.2a | R | |||||||||||||||
54.1.2b1 | R | |||||||||||||||
54.1.2b2 | R | |||||||||||||||
54.1.2b3 | R | |||||||||||||||
54.1.2c1 | R | |||||||||||||||
54.1.2c2 | R | |||||||||||||||
54.1.2c3 | R | |||||||||||||||
54.1.2c4 | R | |||||||||||||||
54.1.2c5 | R | |||||||||||||||
54.1.2c6 | R | |||||||||||||||
54.1.2c7 | R | |||||||||||||||
54.1.2c8 | R | |||||||||||||||
54.1.2c9 | R |
magma: CharacterTable(G);