Show commands:
Magma
magma: G := TransitiveGroup(27, 8);
Group action invariants
Degree $n$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{27}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,22)(2,24)(3,23)(4,21)(5,20)(6,19)(7,17)(8,16)(9,18)(10,15)(11,14)(12,13)(25,26), (1,18,6,19,9,22,12,26,14,2,16,4,20,7,23,10,27,15,3,17,5,21,8,24,11,25,13) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $18$: $D_{9}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 9: $D_{9}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $27$ | $2$ | $( 2, 3)( 4,27)( 5,26)( 6,25)( 7,23)( 8,22)( 9,24)(10,20)(11,19)(12,21)(13,18) (14,17)(15,16)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)$ |
$ 27 $ | $2$ | $27$ | $( 1, 4, 8,12,15,18,20,24,26, 3, 6, 7,11,14,17,19,23,25, 2, 5, 9,10,13,16,21, 22,27)$ |
$ 27 $ | $2$ | $27$ | $( 1, 5, 7,12,13,17,20,22,25, 3, 4, 9,11,15,16,19,24,27, 2, 6, 8,10,14,18,21, 23,26)$ |
$ 27 $ | $2$ | $27$ | $( 1, 6, 9,12,14,16,20,23,27, 3, 5, 8,11,13,18,19,22,26, 2, 4, 7,10,15,17,21, 24,25)$ |
$ 27 $ | $2$ | $27$ | $( 1, 7,13,20,25, 4,11,16,24, 2, 8,14,21,26, 5,12,17,22, 3, 9,15,19,27, 6,10, 18,23)$ |
$ 27 $ | $2$ | $27$ | $( 1, 8,15,20,26, 6,11,17,23, 2, 9,13,21,27, 4,12,18,24, 3, 7,14,19,25, 5,10, 16,22)$ |
$ 27 $ | $2$ | $27$ | $( 1, 9,14,20,27, 5,11,18,22, 2, 7,15,21,25, 6,12,16,23, 3, 8,13,19,26, 4,10, 17,24)$ |
$ 9, 9, 9 $ | $2$ | $9$ | $( 1,10,19, 3,12,21, 2,11,20)( 4,13,23, 6,15,22, 5,14,24)( 7,18,27, 9,17,26, 8, 16,25)$ |
$ 9, 9, 9 $ | $2$ | $9$ | $( 1,11,21, 3,10,20, 2,12,19)( 4,14,22, 6,13,24, 5,15,23)( 7,16,26, 9,18,25, 8, 17,27)$ |
$ 9, 9, 9 $ | $2$ | $9$ | $( 1,12,20, 3,11,19, 2,10,21)( 4,15,24, 6,14,23, 5,13,22)( 7,17,25, 9,16,27, 8, 18,26)$ |
$ 27 $ | $2$ | $27$ | $( 1,13,25,11,24, 8,21, 5,17, 3,15,27,10,23, 7,20, 4,16, 2,14,26,12,22, 9,19, 6,18)$ |
$ 27 $ | $2$ | $27$ | $( 1,14,27,11,22, 7,21, 6,16, 3,13,26,10,24, 9,20, 5,18, 2,15,25,12,23, 8,19, 4,17)$ |
$ 27 $ | $2$ | $27$ | $( 1,15,26,11,23, 9,21, 4,18, 3,14,25,10,22, 8,20, 6,17, 2,13,27,12,24, 7,19, 5,16)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $54=2 \cdot 3^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 54.1 | magma: IdentifyGroup(G);
|
Character table: |
2 1 1 . . . . . . . . . . . . . 3 3 . 3 3 3 3 3 3 3 3 3 3 3 3 3 1a 2a 3a 27a 27b 27c 27d 27e 27f 9a 9b 9c 27g 27h 27i 2P 1a 1a 3a 27e 27d 27f 27g 27i 27h 9b 9c 9a 27c 27a 27b 3P 1a 2a 1a 9c 9c 9c 9a 9a 9a 3a 3a 3a 9b 9b 9b 5P 1a 2a 3a 27g 27h 27i 27a 27c 27b 9c 9a 9b 27e 27d 27f 7P 1a 2a 3a 27f 27e 27d 27i 27h 27g 9b 9c 9a 27b 27c 27a 11P 1a 2a 3a 27d 27f 27e 27h 27g 27i 9b 9c 9a 27a 27b 27c 13P 1a 2a 3a 27h 27i 27g 27b 27a 27c 9c 9a 9b 27d 27f 27e 17P 1a 2a 3a 27c 27a 27b 27e 27f 27d 9a 9b 9c 27i 27g 27h 19P 1a 2a 3a 27b 27c 27a 27f 27d 27e 9a 9b 9c 27h 27i 27g 23P 1a 2a 3a 27i 27g 27h 27c 27b 27a 9c 9a 9b 27f 27e 27d X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.3 2 . 2 -1 -1 -1 -1 -1 -1 2 2 2 -1 -1 -1 X.4 2 . 2 A A A C C C -1 -1 -1 B B B X.5 2 . 2 B B B A A A -1 -1 -1 C C C X.6 2 . 2 C C C B B B -1 -1 -1 A A A X.7 2 . -1 D I F L E K A C B G J H X.8 2 . -1 E L K G H J C B A F D I X.9 2 . -1 F D I E K L A C B H G J X.10 2 . -1 G J H D F I B A C E L K X.11 2 . -1 H G J F I D B A C K E L X.12 2 . -1 I F D K L E A C B J H G X.13 2 . -1 J H G I D F B A C L K E X.14 2 . -1 K E L H J G C B A I F D X.15 2 . -1 L K E J G H C B A D I F A = -E(9)^2-E(9)^4-E(9)^5-E(9)^7 B = E(9)^4+E(9)^5 C = E(9)^2+E(9)^7 D = E(27)^13+E(27)^14 E = -E(27)^8-E(27)^10-E(27)^17-E(27)^19 F = E(27)^5+E(27)^22 G = E(27)^11+E(27)^16 H = -E(27)^7-E(27)^11-E(27)^16-E(27)^20 I = -E(27)^5-E(27)^13-E(27)^14-E(27)^22 J = E(27)^7+E(27)^20 K = E(27)^10+E(27)^17 L = E(27)^8+E(27)^19 |
magma: CharacterTable(G);