Group action invariants
| Degree $n$ : | $27$ | |
| Transitive number $t$ : | $32$ | |
| Group : | $C_3^2:S_3.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,9,4)(2,13,7,5)(3,14,8,6)(10,21,27,18)(11,19,25,16)(12,20,26,17), (1,25,22,18,3,27,24,17,2,26,23,16)(4,10,19,14,6,12,21,13,5,11,20,15)(7,9,8) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 36: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 9: $C_3^2:C_4$
Low degree siblings
18T49 x 2, 36T85 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1, 1 $ | $9$ | $4$ | $( 4,13,26,16)( 5,14,27,17)( 6,15,25,18)( 7,10,22,19)( 8,11,23,20)( 9,12,24,21)$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1, 1 $ | $9$ | $4$ | $( 4,16,26,13)( 5,17,27,14)( 6,18,25,15)( 7,19,22,10)( 8,20,23,11)( 9,21,24,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $( 4,26)( 5,27)( 6,25)( 7,22)( 8,23)( 9,24)(10,19)(11,20)(12,21)(13,16)(14,17) (15,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)$ |
| $ 12, 12, 3 $ | $9$ | $12$ | $( 1, 2, 3)( 4,14,25,16, 5,15,26,17, 6,13,27,18)( 7,11,24,19, 8,12,22,20, 9,10, 23,21)$ |
| $ 12, 12, 3 $ | $9$ | $12$ | $( 1, 2, 3)( 4,17,25,13, 5,18,26,14, 6,16,27,15)( 7,20,24,10, 8,21,22,11, 9,19, 23,12)$ |
| $ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 2, 3)( 4,27, 6,26, 5,25)( 7,23, 9,22, 8,24)(10,20,12,19,11,21) (13,17,15,16,14,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20) (22,24,23)(25,27,26)$ |
| $ 12, 12, 3 $ | $9$ | $12$ | $( 1, 3, 2)( 4,15,27,16, 6,14,26,18, 5,13,25,17)( 7,12,23,19, 9,11,22,21, 8,10, 24,20)$ |
| $ 12, 12, 3 $ | $9$ | $12$ | $( 1, 3, 2)( 4,18,27,13, 6,17,26,15, 5,16,25,14)( 7,21,23,10, 9,20,22,12, 8,19, 24,11)$ |
| $ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 3, 2)( 4,25, 5,26, 6,27)( 7,24, 8,22, 9,23)(10,21,11,19,12,20) (13,18,14,16,15,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $12$ | $3$ | $( 1, 4,25)( 2, 5,26)( 3, 6,27)( 7,11,14)( 8,12,15)( 9,10,13)(16,20,23) (17,21,24)(18,19,22)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $12$ | $3$ | $( 1, 7,23)( 2, 8,24)( 3, 9,22)( 4,10,17)( 5,11,18)( 6,12,16)(13,20,26) (14,21,27)(15,19,25)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 15] |
| Character table: |
2 2 2 2 2 2 2 2 2 2 2 2 2 . .
3 3 1 1 1 3 1 1 1 3 1 1 1 2 2
1a 4a 4b 2a 3a 12a 12b 6a 3b 12c 12d 6b 3c 3d
2P 1a 2a 2a 1a 3b 6b 6b 3b 3a 6a 6a 3a 3c 3d
3P 1a 4b 4a 2a 1a 4b 4a 2a 1a 4b 4a 2a 1a 1a
5P 1a 4a 4b 2a 3b 12c 12d 6b 3a 12a 12b 6a 3c 3d
7P 1a 4b 4a 2a 3a 12b 12a 6a 3b 12d 12c 6b 3c 3d
11P 1a 4b 4a 2a 3b 12d 12c 6b 3a 12b 12a 6a 3c 3d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1
X.3 1 A -A -1 1 A -A -1 1 A -A -1 1 1
X.4 1 -A A -1 1 -A A -1 1 -A A -1 1 1
X.5 3 -1 -1 -1 B C C C /B /C /C /C . .
X.6 3 -1 -1 -1 /B /C /C /C B C C C . .
X.7 3 1 1 -1 B -C -C C /B -/C -/C /C . .
X.8 3 1 1 -1 /B -/C -/C /C B -C -C C . .
X.9 3 A -A 1 B D -D -C /B -/D /D -/C . .
X.10 3 A -A 1 /B -/D /D -/C B D -D -C . .
X.11 3 -A A 1 B -D D -C /B /D -/D -/C . .
X.12 3 -A A 1 /B /D -/D -/C B -D D -C . .
X.13 4 . . . 4 . . . 4 . . . -2 1
X.14 4 . . . 4 . . . 4 . . . 1 -2
A = -E(4)
= -Sqrt(-1) = -i
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
C = -E(3)^2
= (1+Sqrt(-3))/2 = 1+b3
D = -E(12)^11
|