Group action invariants
| Degree $n$ : | $27$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $C_3.S_3^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,17,5,14,21)(2,8,18,4,15,20)(3,7,16,6,13,19)(10,22,27)(11,24,25,12,23,26), (1,26,5,3,27,4)(2,25,6)(7,19,11,23,15,18)(8,21,12,22,13,17)(9,20,10,24,14,16) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 36: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$ x 2
Degree 9: $S_3^2$, $C_3^2 : D_{6} $ x 2
Low degree siblings
9T18 x 2, 18T51 x 2, 18T55 x 2, 18T56, 18T57 x 2, 36T87 x 2, 36T90Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $( 4,26)( 5,27)( 6,25)( 7,23)( 8,24)( 9,22)(10,21)(11,19)(12,20)(13,16)(14,17) (15,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $( 2, 3)( 4, 6)( 7,20)( 8,19)( 9,21)(10,22)(11,24)(12,23)(13,18)(14,17)(15,16) (25,26)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $( 2, 3)( 4,25)( 5,27)( 6,26)( 7,12)( 8,11)( 9,10)(13,15)(16,18)(19,24)(20,23) (21,22)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7,12,14)( 8,10,15)( 9,11,13)(16,22,19)(17,23,20) (18,24,21)(25,26,27)$ |
| $ 6, 6, 6, 6, 3 $ | $18$ | $6$ | $( 1, 2, 3)( 4,27, 6,26, 5,25)( 7,20,14,23,12,17)( 8,21,15,24,10,18) ( 9,19,13,22,11,16)$ |
| $ 6, 6, 6, 6, 3 $ | $18$ | $6$ | $( 1, 4,27, 3, 5,26)( 2, 6,25)( 7,18,15,23,11,19)( 8,17,13,22,12,21) ( 9,16,14,24,10,20)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5,27)( 2, 6,25)( 3, 4,26)( 7,11,15)( 8,12,13)( 9,10,14)(16,20,24) (17,21,22)(18,19,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $12$ | $3$ | $( 1, 7,16)( 2, 8,17)( 3, 9,18)( 4,10,19)( 5,11,20)( 6,12,21)(13,22,25) (14,23,26)(15,24,27)$ |
| $ 6, 6, 6, 6, 3 $ | $18$ | $6$ | $( 1, 7,21,25,10,18)( 2, 9,19,27,11,17)( 3, 8,20,26,12,16)( 4,13,24) ( 5,15,22, 6,14,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 9,22)( 2, 7,23)( 3, 8,24)( 4,12,16)( 5,10,17)( 6,11,18)(13,20,26) (14,21,27)(15,19,25)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 17] |
| Character table: |
2 2 2 2 2 1 1 1 1 . 1 1
3 3 1 1 1 2 1 1 3 2 1 2
1a 2a 2b 2c 3a 6a 6b 3b 3c 6c 3d
2P 1a 1a 1a 1a 3a 3a 3b 3b 3c 3d 3d
3P 1a 2a 2b 2c 1a 2a 2b 1a 1a 2c 1a
5P 1a 2a 2b 2c 3a 6a 6b 3b 3c 6c 3d
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1 1 1 -1 1
X.4 1 1 -1 -1 1 1 -1 1 1 -1 1
X.5 2 . . -2 2 . . 2 -1 1 -1
X.6 2 . . 2 2 . . 2 -1 -1 -1
X.7 2 -2 . . -1 1 . 2 -1 . 2
X.8 2 2 . . -1 -1 . 2 -1 . 2
X.9 4 . . . -2 . . 4 1 . -2
X.10 6 . -2 . . . 1 -3 . . .
X.11 6 . 2 . . . -1 -3 . . .
|