Group action invariants
| Degree $n$ : | $27$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $He_3.C_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,4,7,2,5,8,3,6,9)(10,13,18,11,14,16,12,15,17)(19,22,26,20,23,27,21,24,25), (1,12,25)(2,10,26)(3,11,27)(4,13,20)(5,14,21)(6,15,19)(7,16,24)(8,17,22)(9,18,23) | |
| $|\Aut(F/K)|$: | $9$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ 27: $C_3^2:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$ x 4
Degree 9: $C_3^2$
Low degree siblings
27T20Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $(10,11,12)(13,14,15)(16,17,18)(19,21,20)(22,24,23)(25,27,26)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20) (22,24,23)(25,27,26)$ |
| $ 9, 9, 9 $ | $3$ | $9$ | $( 1, 4, 7, 2, 5, 8, 3, 6, 9)(10,13,18,11,14,16,12,15,17)(19,22,26,20,23,27,21, 24,25)$ |
| $ 9, 9, 9 $ | $3$ | $9$ | $( 1, 4, 7, 2, 5, 8, 3, 6, 9)(10,14,17,11,15,18,12,13,16)(19,24,27,20,22,25,21, 23,26)$ |
| $ 9, 9, 9 $ | $3$ | $9$ | $( 1, 5, 9, 2, 6, 7, 3, 4, 8)(10,13,18,11,14,16,12,15,17)(19,24,27,20,22,25,21, 23,26)$ |
| $ 9, 9, 9 $ | $3$ | $9$ | $( 1, 7, 5, 3, 9, 4, 2, 8, 6)(10,16,13,12,18,15,11,17,14)(19,25,24,21,27,23,20, 26,22)$ |
| $ 9, 9, 9 $ | $3$ | $9$ | $( 1, 7, 5, 3, 9, 4, 2, 8, 6)(10,18,14,12,17,13,11,16,15)(19,26,23,21,25,22,20, 27,24)$ |
| $ 9, 9, 9 $ | $3$ | $9$ | $( 1, 8, 4, 3, 7, 6, 2, 9, 5)(10,16,13,12,18,15,11,17,14)(19,27,22,21,26,24,20, 25,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $9$ | $3$ | $( 1,10,25)( 2,11,26)( 3,12,27)( 4,14,20)( 5,15,21)( 6,13,19)( 7,17,24) ( 8,18,22)( 9,16,23)$ |
| $ 9, 9, 9 $ | $9$ | $9$ | $( 1,13,22, 3,15,24, 2,14,23)( 4,16,27, 6,18,26, 5,17,25)( 7,10,19, 9,12,21, 8, 11,20)$ |
| $ 9, 9, 9 $ | $9$ | $9$ | $( 1,16,21, 2,17,19, 3,18,20)( 4,10,22, 5,11,23, 6,12,24)( 7,14,27, 8,15,25, 9, 13,26)$ |
| $ 9, 9, 9 $ | $9$ | $9$ | $( 1,19,18, 3,21,17, 2,20,16)( 4,23,12, 6,22,11, 5,24,10)( 7,25,13, 9,27,15, 8, 26,14)$ |
| $ 9, 9, 9 $ | $9$ | $9$ | $( 1,22,14, 2,23,15, 3,24,13)( 4,27,17, 5,25,18, 6,26,16)( 7,19,11, 8,20,12, 9, 21,10)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $9$ | $3$ | $( 1,25,10)( 2,26,11)( 3,27,12)( 4,20,14)( 5,21,15)( 6,19,13)( 7,24,17) ( 8,22,18)( 9,23,16)$ |
Group invariants
| Order: | $81=3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [81, 8] |
| Character table: |
3 4 3 3 4 4 3 3 3 3 3 3 2 2 2 2 2 2
1a 3a 3b 3c 3d 9a 9b 9c 9d 9e 9f 3e 9g 9h 9i 9j 3f
2P 1a 3b 3a 3d 3c 9e 9d 9f 9c 9b 9a 3f 9j 9i 9h 9g 3e
3P 1a 1a 1a 1a 1a 3c 3c 3c 3d 3d 3d 1a 3d 3c 3d 3c 1a
5P 1a 3b 3a 3d 3c 9f 9e 9d 9b 9a 9c 3f 9j 9i 9h 9g 3e
7P 1a 3a 3b 3c 3d 9c 9a 9b 9e 9f 9d 3e 9g 9h 9i 9j 3f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 B B B /B /B /B
X.3 1 1 1 1 1 1 1 1 1 1 1 /B /B /B B B B
X.4 1 1 1 1 1 B B B /B /B /B 1 B /B B /B 1
X.5 1 1 1 1 1 /B /B /B B B B 1 /B B /B B 1
X.6 1 1 1 1 1 B B B /B /B /B B /B 1 1 B /B
X.7 1 1 1 1 1 /B /B /B B B B /B B 1 1 /B B
X.8 1 1 1 1 1 B B B /B /B /B /B 1 B /B 1 B
X.9 1 1 1 1 1 /B /B /B B B B B 1 /B B 1 /B
X.10 3 A /A 3 3 . . . . . . . . . . . .
X.11 3 /A A 3 3 . . . . . . . . . . . .
X.12 3 . . /A A C D E /C /E /D . . . . . .
X.13 3 . . /A A D E C /D /C /E . . . . . .
X.14 3 . . /A A E C D /E /D /C . . . . . .
X.15 3 . . A /A /D /E /C D C E . . . . . .
X.16 3 . . A /A /C /D /E C E D . . . . . .
X.17 3 . . A /A /E /C /D E D C . . . . . .
A = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
B = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
C = E(9)^2-E(9)^5
D = -2*E(9)^2-E(9)^5
E = E(9)^2+2*E(9)^5
|